Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Three-Dimensional Spray Distributions in a Direct Injection Diesel Engine

1994-09-01
941693
Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditions (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinged on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions.
Technical Paper

Quantitative Measurement of Droplets and Vapor Concentration Distributions in Diesel Sprays by Processing UV and Visible Images

2001-03-05
2001-01-1294
In order to measure the droplets and vapor concentration inside a fuel spray, a dual-wavelength laser absorption-scattering technique was developed using the second harmonic (532nm) and the fourth harmonic (266nm) of a Nd:YAG laser and using dimethylnaphthalene as the test fuel. The investigation results show that dimethylnaphthalene, which has physical properties similar to diesel fuel, is almost transparent to visible light near 532nm and is a strong absorber of ultraviolet light near 266nm. Based on this result, the vapor concentration in a fuel spray can be determined by the two separate measurements: a transmission measurement at a non-absorbing wavelength to detect the droplets optical thickness and a transmission measurement at an absorbing wavelength to detect the joint vapor and droplets optical thickness. The droplets density can be determined by extinction imaging through the transmission at the non-absorbing wavelength.
Technical Paper

Planar Measurements of the Liquid Phase Temperature in Diesel Sprays Injected into High-Pressure and High-Temperature Environments

1996-05-01
961202
The two-dimensional distributions of the liquid phase temperatures in diesel sprays injected into high-pressure and high-temperature environments were measured using the laser-induced fluorescence technique. The liquid fuel (n-hexadecane) was doped with pyrene(C16H10). The fuel spray doped with pyrene was injected under a high-pressure of 3.1MPa and a high-Temperature of 773K. The evaporating diesel spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The fluorescence intensity ratios of the pyrene monomer and excimer emissions have temperature dependence, and were used to determine the liquid phase temperatures in the diesel sprays. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence images by the temperature dependence of the intensity ratio.
Technical Paper

Approach to Low NOx and Smoke Emission Engines by Using Phenomenological Simulation

1993-03-01
930612
A phenomenological spray-combustion model of a D.I. Diesel engine was applied to study the engine parameters with potential for reducing NOx and smoke emissions. The spray-combustion model, first developed at the University of Hiroshima in 1976, has been sophisticated by incorporating new knowledge of diesel combustion. The model was verified using data from an experimental, single cylinder, D.I. diesel engine with a bore of 135mm and a stroke of 130mm. After the verification process, calculations were made under a wide range of the engine parameters, such as intake air temperature, intake air pressure, intake swirl ratio, nozzle hole diameter, injection pressure, air entrainment rate into the spray, and injection rate profile. These calculations estimated the effects of the engine parameters on NOx, smoke and specific fuel consumption. As a result of the calculations, an approach for the low NOx and smoke emission engine was found.
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
X