Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

The Effects of Cylinder Head Deformation and Asymmetry on Exhaust Valve Thermo-Mechanical Stresses

1998-02-23
981034
A geometrically accurate, three-dimensional finite element model of a Diesel engine exhaust valve and cylinder head assembly has been developed to analyze the effect of cylinder head interactions on exhaust valve stresses. Results indicate that a multi-lobed stress pattern occurs around the exhaust valve head due to cylinder head deformation, stiffness variations, and thermal asymmetry. Consequently, peak valve bending and hoop stresses from the three-dimensional model are 48% and 40% higher, respectively, than for the two-dimensional, axisymmetric model. These results indicate the degree of model complexity required for more accurate analyses of exhaust valve operating stresses.
Technical Paper

Spray and Combustion Visualization in an Optical HSDI Diesel Engine Operated in Low-Temperature Combustion Mode with Bio-diesel and Diesel Fuels

2008-04-14
2008-01-1390
An optically accessible single-cylinder high-speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study the spray and combustion processes for European low sulfur diesel, bio-diesel, and their blends at different blending ratio. Influences of injection timing and fuel type on liquid fuel evolution and combustion characteristics were investigated under similar loads. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation for all test fuels.
Technical Paper

Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector

2007-04-16
2007-01-0203
Combustion processes employing different injection strategies in a High-Speed Direct Inject (HSDI) diesel engine were investigated using a narrow angle injector (70 degree). Whole-cycle combustion was visualized using a high-speed digital video camera. The liquid spray evolution process was imaged by the Mie-scattering technique. Different injection strategies were employed in this study including early pre-Top Dead Center (TDC) injection, post-TDC injection, multiple injection strategies with an early pre-TDC injection and a late post-TDC injection. Smokeless combustion was obtained under some operating conditions. Compared with the original injection angle (150 degree), some new combustion phenomena were observed for certain injection strategies. For early pre-TDC injection strategies, liquid fuel impingement is observed that results in some newly observed fuel film combustion flame (pool fires) following an HCCI-like weak flame.
Technical Paper

Refrigerant Expansion Noise Propagation Through Downstream Tube Walls

1999-03-01
1999-01-1197
Reductions of noise in vehicle passenger compartments in recent years have made some previously undetectable noises audible. Expansion devices used in automobile air conditioning systems are known producers of noise. The fact that these devices are mounted very close to the passengers increases the problems associated with the reduction of this noise. The understanding of the propagation mechanisms from the noise generated in the refrigerant by the expansion device, through the tube and evaporator walls, and finally to the outside air is important. This paper will focus on how noise from expansion devices is transmitted through tube walls downstream of the expansion valve.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Improving Energy Efficiency in Automotive Vapor Compression Cycles through Advanced Control Design

2006-04-03
2006-01-0267
This paper presents an experimental analysis of the performance of various control strategies applied to automotive air conditioning systems. A comparison of the performance of a thermal expansion valve (TEV) and an electronic expansion valve (EEV) over a vehicle drive cycle is presented. Improved superheat regulation and minor efficiency improvements are shown for the EEV control strategies. The efficiency benefits of continuous versus cycled compressor operation are presented, and a discussion of significant improvements in energy efficiency using compressor control is provided. Dual PID loops are shown to control evaporator outlet pressure while regulating superheat. The introduction of a static decoupler is shown to improve the performance of the dual PID loop controller. These control strategies allow for system capacity control, enabling continuous operation and achieving significant energy efficiency improvements.
Technical Paper

Dynamic Model of a Springless Electrohydraulic Valvetrain

1997-02-24
970248
A dynamic model for the springless electrohydraulic valvetrain has been developed. The model speeds up the valvetrain development process by simulating effects of parameter changes, thus minimizing the number of hardware variations. It includes dynamic characteristics of check valves that enable energy recovery, hydraulic snubbers that limit seating velocity of the engine valves, and leakage in the control solenoids. A good match of the experimental data has been obtained for a single valve system, and the model calibration and validation have been completed. The known parameters are used together with some unknown calibration constants which have been tuned to match the experimental data. The simulation results for a twin valve system are also presented. The model applications for system performance analysis and for the closed-loop control of the engine valve lift are described. The cyclic variability of the experimental data is also discussed.
Technical Paper

Development of a Programmable E/H Valve with a Hybrid Control Algorithm

2002-03-19
2002-01-1463
This paper presents a programmable E/H control valve consisting of five individually proportional flow control valves. With a hybrid control algorithm, this valve has programmable valve characteristics, such as adjustable valve deadband and flow control gain, and programmable valve functions, such as different center functions. System analyses and experimental evaluations indicate that this programmable valve is capable of replacing conventional E/H control valves in practical applications.
Technical Paper

Developing Flow Map for Two-Phase R134a after Expansion Device

2008-04-14
2008-01-0736
This paper presents a mapping of developing adiabatic two-phase R134a flow directly after the expansion valve until the flow is “fully developed” in a 15.3mm inner diameter pipe. Flow characteristics of separation distance, flow type in the homogenous region, void fraction as a function of tube length, and fully developed flow region void fraction and regime were quantified and described.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Adaptive PCCI Combustion Using Micro-Variable Circular-Orifice (MVCO) Fuel Injector – Key Enabling Technologies for High Efficiency Clean Diesel Engines

2009-04-20
2009-01-1528
This paper presents the latest results for a new high efficiency clean diesel combustion system – Adaptive PCCI Combustion (a premixed charge compression ignition mixed-mode combustion) using a micro-variable circular orifice (MVCO) fuel injector. Key characteristics of the new combustion system such as low NOx and soot emissions, high fuel efficiency, increased engine torque are presented through KIVA simulation results. While early premixed charge compression ignition (PCCI) combustion reduces engine-out NOx and soot, it's limited to partial loads by known issues such as combustion control, high HC and CO, and high pressure rise rate, etc. Conventional combustion is well controlled diffusion combustion but comes with high NOx and soot. Leveraging the key merits of PCCI and conventional combustion in a practical engine is both meaningful and challenging.
Technical Paper

Adaptive Lift Control for a Camless Electrohydraulic Valvetrain

1998-02-23
981029
Camless actuation offers programmable flexibility in controlling engine valve events. However, a full range of engine benefits will only be available, if the actuation system can control lift profile characteristics within a particular lift event. Control of the peak value of valve lift is a first step in controlling the profile. The paper presents an adaptive feedback control of valve lift for a springless electrohydraulic valvetrain. The adaptive control maintains peak value of lift in presence of variations in engine speed, hydraulic fluid temperature and manufacturing variability of valve assemblies. The control design includes a reduced-order model of the system dynamics. Experimental results show dynamic behavior under various operating and environmental conditions and demonstrate advantages of adaptive control over the non-adaptive type.
Technical Paper

A Sensor for Estimating the Liquid Mass Fraction of the Refrigerant Exiting an Evaporator

2000-03-06
2000-01-0976
A traditional method of controlling evaporator superheat in a vapor compression air conditioning system is the thermostatic expansion valve (TXV). Such systems are often used in automotive applications. The TXV depends on superheat to adjust the valve opening. Unfortunately, any amount of superheat causes that evaporator to operate at reduced capacity due to dramatically lower heat transfer coefficients in the superheated region. In addition, oil circulation back to the compressor is impeded. The cold lubricant almost devoid of dissolved refrigerant is quite viscous and clings to the evaporator walls. A system that could control an air conditioner to operate with no superheat would either decrease the size of its existing evaporator while maintaining the same capacity, or potentially increase its capacity with its original evaporator. Also, oil circulation back to the compressor would be improved.
X