Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Reducing the Uncertainty of Sound Absorption Measurements Using the Impedance Tube Method

2013-05-13
2013-01-1965
The measurement of sound absorption coefficient (SAC) of porous materials is covered by both American and international standards. However, by using the standards alone it is difficult to achieve consistently repeatable results given the large number of variables such as sample cutting and preparation, sample fit and position in the tube, and sample material variability. This paper will review the standards briefly and examine what is available in the literature to guide users in making consistently repeatable SAC measurements. The paper will also show some of the authors' results and interpret these results in light of the standards and technical literature on the subject.
Journal Article

Practical Considerations when using the Two-Load Method to Determine the Transmission Loss of Mufflers and Silencers

2013-05-13
2013-01-1881
The two-load method is commonly used to determine the transmission loss of a muffler or silencer. Several practical measurement considerations are examined in this paper. First of all, conical adapters are sometimes used to transition between impedance tubes and the muffler. It is demonstrated that the effect of adding the adapter can be quite significant at low frequencies especially if the adapter is short in length. The effect of changing the length of the adapter was examined via measurement and plane wave theory. Secondly, the effect of selecting the reference microphone was examined experimentally. It was found that measurements are improved by selecting a downstream reference. Finally, the effect of using different frequency response function estimation algorithms (H1, H2 and Hv) was compared sans flow. This had little effect on the measurement.
Technical Paper

Numerical Simulation of Diesel Particulate Filters in Exhaust Systems

2011-05-17
2011-01-1559
This paper documents a finite element approach to predict the attenuation of muffler and silencer systems that incorporate diesel particulate filters (DPF). Two finite element models were developed. The first is a micro FEM model, where a subset of channels is modeled and transmission matrices are determined in a manner consistent with prior published work by Allam and Åbom. Flow effects are considered at the inlet and outlet to the DPF as well as viscous effects in the channels themselves. The results are then used in a macro FEM model of the exhaust system where the transmission relationship from the micro-model is used to simulate the DPF. The modeling approach was validated experimentally on an example in which the plane wave cutoff frequency was exceeded in the chambers upstream and downstream to the DPF.
X