Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Evaluations of Mechanical Properties of ABS Parts from Open-Source 3D Printers and Conventional Manufacturing

2020-04-14
2020-01-0229
3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. The objective of the present work was to comprehensively evaluate the mechanical properties of engineering products fabricated by 3D printing and conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the identical parts out of the same material (acrylonitrile butadiene styrene). The parts were printed at various positions on the printer platforms and then tested in bending. Results indicate that there exist substantial differences in mechanical responses among the parts by different 3D printers.
Technical Paper

Anisotropic Material Behavior and Design Optimization of 3D Printed Structures

2020-04-14
2020-01-0228
Traditional manufacturing processes such as injection or compression molding are often enclosed and pressurized systems that produce homogenous products. In contrast, 3D printing is exposed to the environment at ambient (or reduced) temperature and atmospheric pressure. Furthermore, the printing process itself is mostly “layered manufacturing”, i.e., it forms a three-dimensional part by laying down successive layers of materials. Those characteristics inevitably lead to an inconsistent microstructure of 3D printed products and thus cause anisotropic mechanical properties. In this paper, the anisotropic behaviors of 3D printed parts were investigated by using both laboratory coupon specimens (bending specimens) and complex engineering structures (A-pillar). Results show that the orientation of the infills of 3D printed parts can significantly influence their mechanical properties.
X