Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

µMist® - The next generation fuel injection system: Improved atomisation and combustion for port-fuel-injected engines

2011-08-30
2011-01-1890
The Swedish Biomimetics 3000's μMist® platform technology has been used to develop a radically new injection system. This prototype system, developed and characterized with support from Lotus, as part of Swedish Biomimetics 3000®'s V₂IO innovation accelerating model, delivers improved combustion efficiency through achieving exceptionally small droplets, at fuel rail pressures far less than conventional GDI systems and as low as PFI systems. The system gives the opportunity to prepare and deliver all of the fuel load for the engine while the intake valves are open and after the exhaust valves have closed, thereby offering the potential to use advanced charge scavenging techniques in PFI engines which have hitherto been restricted to direct-injection engines, and at a lower system cost than a GDI injection system.
Technical Paper

Vehicle Handling Analysis Using Linearisation Around Non-Linear Operating Conditions

1996-02-01
960482
A non-linear example vehicle model including four degrees of freedom (yaw, sideslip, roll and steering), non-linear kinematics and the Magic Formula tyre model has been developed. With the assumption of small perturbations around any steady-state working condition, the linearised equations are derived. A novel approach is used for the linearisation of external forces and moments from the tyres. They are linearised in terms of the state variables rather than the slip angle, camber angle and vertical load which are themselves functions of the state variables. The results of this process are expressed in terms of stability derivatives. In order to use the method, the steady-state solution of the non-linear equations is first obtained for a particular value of lateral acceleration, then after the calculation of the stability derivatives, a linear analysis can be performed for the linear equations in terms of perturbed variables.
Technical Paper

The influence of damper properties on vehicle dynamic behavior

2000-06-12
2000-05-0231
The detailed, dynamic properties of dampers are known to influence substantially some of the subtle - and yet nevertheless hugely important - refinement aspects or ride and handling. Despite this, most of the current work on damping characterization relies on steady-state properties and transient aspects are left largely to subjective in-car assessments by test drivers. The paper describes research work aimed at improving our understanding of the transient properties of dampers through mathematical modeling and then attempting to link these properties to detailed aspects of the vehicle ride and handling. Further experimental work is planned to follow later. From a moderately complex mathematical model of a damper, an attempt is made to identify (a) those transient characteristics which are important in influencing the vehicle responses perceived by test drivers, and (b) which design features of the damper control those characteristics.
Technical Paper

Spatial Structure in End-Gas Autoignition

1993-10-01
932758
Numerical investigations are reported on the location of sites at which autoignition first develops in the end-gas ahead of a spark-ignited flame in a combustion chamber following rapid compression of an alkane + air mixture to high pressures and temperatures. Attention is drawn to the part played by the reactions that give rise to a negative temperature coefficient of reaction rate in an inhomogeneous temperature field. A ‘reduced’ kinetic mechanism was employed to model the spontaneous oxidation of n-alkanes. Flame propagation was described in terms of the ‘eddy dissipation concept’ and coupled to the more detailed mechanism by means of a switching algorithm. The CFD calculations were performed by use of KIVA II.
Technical Paper

Real World Driving: Emissions in Highly Congested Traffic

2017-10-08
2017-01-2388
The emissions from vehicles in real world driving are of current concern, as they are often higher than on legislated test cycles and this may explain why air quality in cities has not improved in proportion to the reduction in automotive emissions. This has led to the Real Driving Emissions (RDE) legislation in Europe. RDE involves journeys of about 90km with roughly equal proportion of urban, rural and motorway driving. However, air quality exceedances occur in cities with urban congested traffic driving as the main source of the emissions that deteriorate the air quality. Thus, the emissions measured on RDE journeys may not be relevant to air quality in cities. A Temet FTIR and Horiba exhaust flow measurement system was used for the mass emissions measurements in a Euro 4 SI vehicle. A 5km urban journey on a very congested road was undertaken 29 times at various times so that different traffic congestion was encountered.
Technical Paper

Motion Cueing Evaluation of Off-Road Heavy Vehicle Handling

2016-09-27
2016-01-8041
Motion cueing algorithms can improve the perceived realism of a driving simulator, however, data on the effects on driver performance and simulator sickness remain scarce. Two novel motion cueing algorithms varying in concept and complexity were developed for a limited maneuvering workspace, hexapod/Stuart type motion platform. The RideCue algorithm uses a simple swing motion concept while OverTilt Track algorithm uses optimal pre-positioning to account for maneuver characteristics for coordinating tilt adjustments. An experiment was conducted on the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Ride Motion Simulator (RMS) platform comparing the two novel motion cueing algorithms to a pre-existing algorithm and a no-motion condition.
Technical Paper

Mechanical Performance of V-Ribbed Belt Drives (Experimental Investigation)

1997-02-24
970006
A non-contacting laser displacement meter has been used for dynamic measurements of the radial movement of a v-ribbed belt (type 3PK) around the arc of wrap running on a belt testing rig. Accurate and repeatable results are possible. Using this device, the belt radial movement and the beginning of rib bottom / groove tip contact around the arc of wrap have been determined experimentally for v-ribbed belts. Slip, torque loss, maximum torque capacity and efficiency have been measured during the tests.
Technical Paper

Integration of Active Suspension and Active Driveline to Improve Vehicle Dynamics

2004-11-30
2004-01-3544
Many active control systems are developed as safety systems for passenger vehicles. These control systems usually focus on improving vehicle stability and safety while ignoring the effects on the vehicle driveability. In the motorsport environment, increased stability is desirable but not if the driveability of the vehicle is heavily compromised. In this work, active suspension and active drivelines are examined to improve vehicle dynamics and enhance driveability while maintaining stability. The active control systems are developed as separate driveability and stability controls and tested individually then integrated to create a multi-objective control system to improve both driveability and stability. The controllers are tested with standard vehicle manoeuvres.
Technical Paper

Integration of Active Suspension and Active Driveline to Ensure Stability While Improving Vehicle Dynamics

2005-04-11
2005-01-0414
Most active control systems developed for passenger vehicles are developed as safety systems. These control systems usually focus on improving vehicle stability and safety while ignoring the effects on the vehicle driveability. While stability is the primary concern of these control systems the driveability of the vehicle is also an important consideration. An example of compromised driveability in a stability control system is brake based active yaw control. Brake based systems are very effective at stability control but can have a negative impact on the longitudinal dynamics of a vehicle. The objective of the vehicle control systems developed for the future will be to preserve vehicle driveability while ensuring the stability of the vehicle. In this work, active suspension and active drivelines are developed as stability control systems that have a minimal impact on the driveability of the vehicle.
Technical Paper

Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability

2004-03-08
2004-01-1071
This paper proposes an advanced control strategy to improve vehicle handling and directional stability by integrating either Active Front Steering (AFS) or Active Rear Steering (ARS) with Variable Torque Distribution (VTD) control. Both AFS and ARS serve as the steerability controller and are designed to achieve the improved yaw rate tracking in low to mid-range lateral acceleration using Sliding Mode Control (SMC); while VTD is used as the stability controller and employs differential driving torque between left and right wheels on the same axle to produce a relatively large stabilizing yaw moment when the vehicle states (sideslip angle and its angular velocity) exceed the reference stable region defined in the phase plane. Based on these stand-alone subsystems, an integrated control scheme which coordinates the control actions of both AFS/ARS and VTD is proposed. The functional difference between AFS and ARS when integrated with VTD is explained physically.
Technical Paper

Improving Performance of a 6×6 Off-Road Vehicle Through Individual Wheel Control

2002-03-04
2002-01-0968
This paper presents a method of control for a 6×6 series-configured Hybrid Electric Off-road Vehicle (HEOV). The vehicle concerned is an eight-tonne logistics support vehicle which utilizes Hub Mounted Electric Drives (HMED) at each of its six wheel stations. This set-up allows Individual Wheel Control (IWC) to be implemented to improve vehicle handling and mobility. Direct Yaw-moment Control (DYC) is a method of regulating individual wheel torque to control vehicle yaw motion, providing greater stability in cornering. When combined with both a Traction Control System (TCS) and an Anti-lock Braking System (ABS) the tire/road interaction is fully controlled, leading to improved control over vehicle dynamics, whilst also improving vehicle safety.
Technical Paper

Examining the Influence of Road Grade on Vehicle Specific Power (VSP) and Carbon Dioxide (CO2) Emission over a Real-World Driving Cycle

2013-04-08
2013-01-1518
The Carbon Dioxide (CO₂) emission from a EURO 3 diesel van over a real-world driving cycle were investigated utilizing part of the Leeds University - Headingly Ring Road (LU-HR) driving cycle, which comprises both an urban (congested) and extra-urban (high speed) driving section. The vehicle used in this research was a 1.8-liter Ford Connect TDCi diesel van. Emissions were monitored by a Portable Emissions Measurement System (PEMS) incorporating an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system, a Horiba On Board emissions measuring System (OBS 1300) which measured the exhaust flow rate and air/fuel ratio, and a RaceLogic VBOX II differential GPS system provided geographical position, speed and acceleration data. Route topography is known to have substantial influence on vehicle emission.
Technical Paper

Development and Analysis of a Prototype Controllable Suspension

1997-08-06
972691
Persisting concerns regarding ride comfort, directional stability and more recently road damage have caused the manufacturers of commercial vehicles to consider controllable suspension systems. An electronically controllable adaptive suspension that comprises a variable spring rate system, switchable damping and load levelling is proposed as a cost-effective solution. This paper describes the aforementioned system and provides an outline of the design scheme for a prototype system; practical issues such as system configuration/detail, control system requirements, etc., are discussed. The system is evaluated analytically and both ride and handling modes are examined. In conclusion, performance capabilities are defined and cost-benefit issues addressed.
Technical Paper

Cyclically Resolved Simultaneous Flame and Flow Imaging in a SI Engine

2000-10-16
2000-01-2832
A novel dual seeding method has been developed to obtain full bore cyclically resolved simultaneous flame images and associated velocity fields in an optically accessed single cylinder research spark ignition engine. The technique has been used to study interaction between the propagating flame and in-cylinder gas motion. Light generated by a fast repetition rate copper vapour laser was formed into a thin light sheet, which passed horizontally through the disc shaped combustion space of a spark ignition engine having complete overhead optical access. Mie scattered light from relatively sparse and large particles (∼65μm) at successive intervals allowed flow definition by particle tracking velocimetry. Simultaneous scattering from dense small seed (∼0.22μm) was used to generate flame front images, which were digitised and analysed to quantify turbulent flame structure and development. The flame was shown to have significant effect on local unburned gas motion as well as vice versa.
Technical Paper

Coupling of Driveline and Body Vibrations in Trucks

1996-10-01
962206
Torsional motion of a truck driveline system is coupled with other motions of its components. In this paper, a comprehensive model of the truck driveline and body for vibration analysis was developed. Coupling of the torsional vibration of the truck driveline system with the body fore-aft and vertical vibrations was investigated. A mathematical model, including the torsional vibration of the driveline system and the whole body vibrations of the truck, was constructed. The driveline system was modelled as a set of inertia discs linked together by massless springs and the tyre was represented as having massless circumferential band which is elastically connected to the carcass with the bands being subject to longitudinal forces at the road surface. System behaviour at steady and transient runs was developed.
Technical Paper

CFD Analysis of the Battery Thermal Management System for a Heavy-Duty Truck

2024-04-09
2024-01-2668
Li-ion batteries (LIBs) optimum performance and lifetime depend on temperature, with the commonly suggested operating temperature being in the range of 25 to 40 °C. It's also crucial to keep the temperature difference between battery cells below 5°C. Operation at different temperature ranges can adversely affect or degrade the performance and lifetime of LIBs. A battery thermal management system (BTMS) is essential for keeping the battery temperature within the optimum range. This paper aims to develop and analyze the BTMS for an electric heavy-duty truck. To achieve this aim, battery cells and modules are modelled in ANSYS Fluent software. Validation with experimental results and mesh sensitivity studies are also performed to increase confidence in simulation data. The model is then analyzed for a specific cooling systems to investigate its effect on battery thermal performance during the operation.
Technical Paper

Analysis of Various Driving Parameters and Emissions for Passenger Cars Driven With and Without Stops at Intersections under Different Test Cycles

2012-04-16
2012-01-0880
Different driving test cycles, the Leeds-West Park (LWP) loop and the Leeds-High Park (LHP) or HPL-A and B (Leeds-Hyde Park Loop-A or B, hereafter referred as HPL-A or B cycle) loop were selected for this urban intersection research and results are presented in this study. Different emissions-compliant petrol passenger cars (EURO 1, 2, 3 and 4) were compared for their real-world emissions. A reasonable distance of steady state speed was needed and for the analysis made in this paper were chosen vehicle speeds at ~20, ~30 and ~40 km/h. Specific spot of periods of driving at the speeds mentioned above were identified, then the starting and ending point was found and the total emissions in g for that period divided by the distance was calculated. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle.
Technical Paper

A New Simulation Approach of Estimating the Real-World Vehicle Performance

2020-04-14
2020-01-0370
Due to the variability of real traffic conditions for vehicle testing, real-world vehicle performance estimation using simulation method become vital. Especially for heavy duty vehicles (e.g. 40 t trucks), which are used for international freight transport, real-world tests are difficult, complex and expensive. Vehicle simulations use mathematical methods or commercial software, which take given driving cycles as inputs. However, the road situations in real driving are different from the driving cycles, whose speed profiles are obtained under specific conditions. In this paper, a real-world vehicle performance estimation method using simulation was proposed, also it took traffic and real road situations into consideration, which made it possible to investigate the performance of vehicles operating on any roads and traffic conditions. The proposed approach is applicable to all kind of road vehicles, e.g. trucks, buses, etc. In the method, the real-road network includes road elevation.
X