Refine Your Search

Topic

Author

Search Results

Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Journal Article

The Influence of Road Surface Properties on Vehicle Suspension Parameters Optimized for Ride - Design Trends for Global Markets

2012-04-16
2012-01-0521
Suspension design is influenced by many factors, especially by vehicle dynamics performance in ride, handling and durability. In the global automotive industry it is common to “customize” or tune suspension parameters so that a vehicle is more acceptable to a different customer base and in a different driving environment. This paper seeks to objectively quantify certain aspects of tuning via ride optimization, taking account of market differences in road surface spectral properties and loading conditions. A computationally efficient methodology for suspension optimization is developed using stochastic techniques. A small (B-class) vehicle is chosen for the study and the following main suspension parameters are selected for optimization - spring stiffness, damping rate and vertical tire stiffness. The road is characterized as a stationary random process, using scaling and shaping filters representative of comparable roads in India and the USA.
Technical Paper

The Development of HFE Space Claims for Combat Vehicles

2014-04-01
2014-01-0488
Discuss the basics of posturing and positioning of the full range of occupants necessary to cover the required anthropometric demographics in combat vehicles, both ground and air, since there are similarities to both and that they are both very different than the traditional automotive packaging scenarios. It is based on the Eye Reference Point and the Design Eye Point. Discuss the three Reach Zones: Primary, Secondary and Tertiary. Discuss Vision Zones and potentially ground intercepts. Discuss body clearances, both static and dynamic. Discuss the basic effects of packaging occupants with body armor with respect to SRP's and MSRP's.
Journal Article

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
Technical Paper

Steering System Noise Evaluation

2016-06-15
2016-01-1832
Intermediate shaft assembly is used to connect steering gear to the steering wheel. The primary function of the intermediate shaft is to transfer torsional loads. There is a high probability of noise propagating through the Intermediate shaft to the driver. The current standard for measuring the noise is by performing vehicle level subjective evaluations. If improperly clamped at either of the yokes, a sudden change in the direction of the torsional load on the Intermediate shaft can generate a displeasing noise. Noise can also be generated from the constant velocity joint. Intermediate shaft noise can be measured using a microphone or can be correlated to acceleration values. The benefit of measuring the acceleration over sound pressure level is the reduction of complexity of the test environment and test set up. The nature of the noise in question requires the filtering of low frequency data. This paper presents a new test procedure that has been developed by General Motors.
Technical Paper

Simulating Reach Motions

1999-05-18
1999-01-1916
Modeling normal human reach behavior is dependent on many factors. Anthropometry, age, gender, joint mobility and muscle strength are a few such factors related to the individual being modeled. Reach locations, seat configurations, and tool weights are a few other task factors that can affect dynamic reach postures. This paper describes how two different modeling approaches are being used in the University of Michigan Human Motion Simulation Laboratory to predict normal seated reaching motions. One type of model uses an inverse kinematic structure with an optimization procedure that minimizes the weighted sum of the instantaneous velocity of each body segment. The second model employs a new functional regression technique to fit polynomial equations to the angular displacements of each body segment. To develop and validate these models, 38 subjects of widely varying age and anthropometry were asked to perform reaching motions while seated in simulated vehicle or industrial workplace.
Technical Paper

Seat Belt Retractor Rattle: Understanding Root Sources and Testing Methods

1999-05-17
1999-01-1729
This paper describes the rattle mechanisms that exist in seat belt retractors and the vehicle acceleration conditions that induce these responses. Three principal sources of rattle include: 1) the sensor, 2) the spool, and 3) the lock pawl. In-vehicle acceleration measurements are used to characterize retractor excitation and are subsequently employed for laboratory testing of retractor rattle. The merits and demerits of two testing methods, based on frequency domain and time domain shaker control, are discussed.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Technical Paper

Research on the Driving Stability Control System of the Dual-Motor Drive Electric Vehicle

2019-04-02
2019-01-0436
In order to improve the steering stability of the dual-motor drive electric vehicle, Taking the yaw rate and the sideslip angle as the control variables, Using the improved two degree of freedom linear dynamic model and seven degree of freedom nonlinear vehicle dynamics model, The hierarchical structure is used to establish the dual-motor drive electric vehicle steering stability control strategy which consist of the upper direct yaw moment decision-making layer based on the sliding mode controller and the lower additional yaw moment distribution layer based on the optimization theory. The Matlab/Simulink-Carsim joint simulation platform was built. The control strategy proposed in this paper was simulated and verified under the snake test condition and double-line shift test condition.
Technical Paper

Recent Aircraft Tire Thermal Studies

1982-02-01
821392
A method has been developed for calculating the internal temperature distribution in an aircraft tire while free rolling under load. The method uses an approximate stress analysis of each point in the tire as it rolls through the contact patch, and from this stress change the mechanical work done on each volume element may be obtained and converted into a heat release rate through a knowledge of material characteristics. The tire cross-section is then considered as a body with internal heat generation, and the diffusion equation is solved numerically with appropriate boundary conditions at the wheel and runway surface. Comparisons with buried thermocouples in actual aircraft tires shows good agreement.
Technical Paper

Rapid Development of Diverse Human Body Models for Crash Simulations through Mesh Morphing

2016-04-05
2016-01-1491
Current finite element (FE) human body models (HBMs) generally only represent young and mid-size male occupants and do not account for body shape and composition variations among the population. Because it generally takes several years to build a whole-body HBM, a method to rapidly develop HBMs with a wide range of human attributes (size, age, obesity level, etc.) is critically needed. Therefore, the objective of this study was to evaluate the feasibility of using a mesh morphing method to rapidly generate skeleton and whole-body HBMs based on statistical geometry targets developed previously. THUMS V4.01 mid-size male model jointly developed by Toyota Motor Corporation and Toyota Central R&D Labs was used in this study as the baseline HBM to be morphed. Radial basis function (RBF) was used to morph the baseline model into the target geometries.
Technical Paper

Preliminary Design of a Single Engine Business Jet

1993-05-01
931253
The preliminary design of a single engine business jet is presented. The airplane is intended to fill a market niche surrounded by several types of airplanes: single engine (piston and turboprop) and entry-level twin engine airplanes (turboprop and turbofan). The Williams-Rolls FJ44 turbofan engine, with a takeoff thrust rating of 1900 pounds, is chosen as the powerplant because of its low acquisition and maintenance costs. The airplane is designed to carry four persons and baggage 1500 n.m. with VFR reserves, and is intended to meet FAR 23 standards — including the 61 knot single engine stall speed requirement. A parametric analysis of wing aspect ratio, thickness, and taper is performed to determine the best planform from the standpoint of weight, cruise speed, and cost. Maximum cruise speed is estimated to be 371 knots and the airplane purchase price is estimated to be 1.98 million. These results indicate the airplane will satisfy intended market niche.
Technical Paper

Predicting Foot Positions for Manual Materials Handling Tasks

2005-06-14
2005-01-2681
For many industrial tasks (push, pull, lift, carry, etc.), restrictions on grip locations and visibility constrain the hand and head positions and help to define feasible postures. In contrast, foot locations are often minimally constrained and an ergonomics analyst can choose several different stances in selecting a posture to analyze. Also, because stance can be a critical determinant of a biomechanical assessment of the work posture, the lack of a valid method for placing the feet of a manikin with respect to the task compromises the accuracy of the analysis. To address this issue, foot locations and orientations were captured in a laboratory study of sagittal plane and asymmetric manual load transfers. A pilot study with four volunteers of varying anthropometry approached a load located on one of three shelves and transferred the load to one of six shelves.
Technical Paper

Plant Identification and Design of Optimal Clutch Engagement Controller

2006-10-31
2006-01-3539
Automated clutches for vehicle startup is being increasingly deployed in commercial trucks for benefits, which include driver comfort, gradient performance, improved clutch life, emissions and driveline vibration reduction potential. The process of designing the controller is divided into 2 parts. Firstly, the parameter estimation of previously developed driveline models is carried out. The procedure involves an off-line minimization technique based on measured and estimated speeds. Secondly, the nominal plant model is used to develop LQR based optimal control strategy, which takes into account the slip time, dissipated power and slip acceleration. Mathematical expression of the performance index is clearly developed. A variety of clutch lock up profiles can be incorporated by changing a single tuning parameter, thus providing the driver the ability to select a launch profile based on specific driving objectives.
Technical Paper

Patterns of Acetabular Femoral Head Coverage

2011-11-07
2011-22-0018
The size and shape of the acetabulum and of the femoral head influence the injury tolerance of the hip joint. The aim of this study is to quantify changes in acetabular cup geometry that occur with age, gender, height, and weight. Anonymized computed tomography (CT) scans of 1,150 individuals 16+ years of age, both with and without hip trauma, were used to describe the acetabular rim with 100 equally spaced points. Bilateral measurements were taken on uninjured patients, while only the uninjured side was valuated in those with hip trauma. Multinomial logistic regression found that after controlling for age, height, weight, and gender, each 1 degree decrease in acetabular anteversion angle (AAA) corresponded to an 8 percent increase in fracture likelihood (p≺0.001).
Technical Paper

Model Update and Statistical Correlation Metrics for Automotive Crash Simulations

2007-04-16
2007-01-1744
In order to develop confidence in numerical models which are used for automotive crash simulations, results are compared with test data. Modeling assumptions are made when constructing a simulation model for a complex system, such as a vehicle. Through a thorough understanding of the modeling assumptions an appropriate set of variables can be selected and adjusted in order to improve correlation with test data. Such a process can lead to better modeling practices when constructing a simulation model. Comparisons between the time history of acceleration responses from test and simulations are the most challenging. Computing accelerations correctly is more difficult compared to computing displacements, velocities, or intrusion levels due to the second order differentiation with time. In this paper a methodology for enabling the update of a simulation model for improved correlation is presented.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Technical Paper

Longitudinal Vibration of Elastic Vehicle Track Systems

1997-02-24
971090
Real-time simulation of tracked vehicle dynamics demands very efficient modeling of the vehicle track. Multi-body dynamics models which model the response of each track pitch are complete, but require on the order of 100 degrees of freedom to capture lateral track dynamics and an additional 200 degrees of freedom to capture longitudinal (stretching) track dynamics. The sheer size of such models renders them difficult to use for rapid estimates of track response. This paper summarizes an efficient alternative for modeling vehicle tracks, as illustrated herein by a model for longitudinal track dynamics. The present model is a hybrid discrete/continuous model in which the track is modeled as a continuous uniform elastic rod which is kinematically coupled to discrete models for the sprocket, wheels, and rollers. Solution efficiency derives from transforming the dynamic track model to one employing modal coordinates.
Technical Paper

Linearity of Powertrain Acceleration Sound

1997-05-20
971982
The loudness of powertrain noise generally increases with increasing rpm. In the case of ‘linear’ powertrain acceleration sound, the loudness versus time relationship is well described by a linear function. Two studies were conducted on powertrain linearity. The first used tests of similarity and preference to determine whether subjects could detect changes in linearity. The second used a subjective test of preference to investigate how subjects' preference varied with differing degrees of linearity. In both studies, stimulus sets were created by artificially introducing a controlled degree of non-linearity into a nominally linear powertrain sound. The results of the first study indicate that linearity is a phenomenon that naive subjects can readily detect, and that it has an effect on overall preference. Furthermore, the second study shows that preference is related to the magnitude and position of nonlinearities in the growth of loudness versus time during an acceleration run.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
X