Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

‘ElderTech’ - Enhancing the Independence of Elderly Through the Use of Technology

2000-03-06
2000-01-1368
Longevity is one of the great achievements of the twentieth century. This paper will explore ways that elderly people can employ technology to enhance their independence, loosely termed “ElderTech.” ElderTech is designed to establish a sustained, long-term investment in research and development (R&D) for technologies that can provide the largest growing population, Americans over the age of 65, with the tools to ensure active aging (maintaining independence, self-reliance, and an enhanced quality of life). It will also promote aging in place (in the home); and will address and ease Medicare's financial burden on the federal government. ElderTech is aimed to establish a technology framework that will ensure that the United States (U.S.) is ready to meet the needs of its older Americans.
Technical Paper

Voronoi Partitions for Assessing Fuel Consumption of Advanced Technology Engines: An Approximation of Full Vehicle Simulation on a Drive Cycle

2018-04-03
2018-01-0317
This paper presents a simple method of using Voronoi partitions for estimating vehicle fuel economy from a limited set of engine operating conditions. While one of the overarching goals of engine research is to continually improve vehicle fuel economy, evaluating the impact of a change in engine operating efficiency on the resulting fuel economy is a non-trivial task and typically requires drive cycle simulations with experimental data or engine model predictions and a full suite of engine controllers over a wide range of engine speeds and loads. To avoid the cost of collecting such extensive data, proprietary methods exist to estimate fuel economy from a limited set of engine operating conditions. This study demonstrates the use of Voronoi partitions to cluster and quantize the fuel consumed along a complex trajectory in speed and load to generate fuel consumption estimates based on limited simulation or experimental results.
Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Journal Article

Virtual Switches and Indicators in Automotive Displays

2020-04-14
2020-01-1362
This paper presents recent advances in automotive microprocessor, operating system, and supporting software technology that supports regulatory and/or functional safety graphics within vehicle cockpit displays. These graphics include “virtual switches” that replace physical switches in the vehicle, as well as “virtual indicators” that replace physical indicator lights. We discuss the functional safety design process and impacts to software and hardware architecture as well as the software design methods to implement End-To-End [E2E] network protection between different ECUs and software processes. We also describe hardware monitoring requirements within the display panel, backlighting, and touch screen and examine an example system design to illustrate the concepts.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Using Deep Learning to Predict the Engine Operating Point in Real-Time

2021-04-06
2021-01-0186
The engine operating point (EOP), which is determined by the engine speed and torque, is an important part of a vehicle's powertrain performance and it impacts FC, available propulsion power, and emissions. Predicting instantaneous EOP in real-time subject to dynamic driver behaviour and environmental conditions is a challenging problem, and in existing literature, engine performance is predicted based on internal powertrain parameters. However, a driver cannot directly influence these internal parameters in real-time and can only accommodate changes in driving behaviour and cabin temperature. It would be beneficial to develop a direct relationship between the vehicle-level parameters that a driver could influence in real-time, and the instantaneous EOP. Such a relationship can be exploited to dynamically optimize engine performance.
Technical Paper

Upper Body Coordination in Reach Movements

2008-06-17
2008-01-1917
A research scheme and preliminary results of a pilot study concerning upper body coordination in reach movements is presented. Techniques for multi-joint arm movements were used to obtain the kinematics of each body segment in reach movements to targets spatially distributed in a horizontal plane. Further understanding of the control mechanisms associated with coordination is investigated by combining the information of gaze orientation and body segment movements during reach activities. The implicit sequence of body segments in reach movement can be derived from their kinematic characteristics. Moreover, an identification of phases composing a reach movement is attempted.
Research Report

Unsettled Issues Facing Automated Vehicles and Insurance

2020-08-05
EPR2020015
This SAE EDGE™ Research Report explores how the deployment of automated vehicles (AVs) will affect the insurance industry and the principles of liability that underly the structure of insurance in the US. As we trade human drivers for suites of sensors and computers, who (or what) is responsible when there is a crash? The owner of the vehicle? The automaker that built it? The programmer that wrote the code? Insurers have over 100 years of experience and data covering human drivers, but with only a few years’ worth of information on AVs – how can they properly predict the true risks associated with their deployment? Without an understanding of the nature and risks of AVs, how can the government agencies that regulate the insurance industry provide proper oversight? Do the challenges AVs present require a total reworking of our insurance and liability systems, or can our current structures be adapted to fit them with minor modifications?
Technical Paper

Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine

2017-03-28
2017-01-0613
Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Three-Dimensional Reach Kinematics of the Upper Extremity in a Dynamic Vehicle Environment

2008-06-17
2008-01-1886
Simulation of reach movements is an essential component for proactive ergonomic analysis in digital human modeling and for numerous applications in vehicle design. Most studies on reach kinematics described human movements in static conditions. Earlier studies of reach performance in vibration environments focused mainly on fingertip deviation without considering multi-body dynamics. However, for the proper assessment of reach performance under whole-body vibration exposure, a multi-body biodynamic model needs to be developed. This study analyzes three dimensional reach kinematics of the upper extremity during in-vehicle operations, using a multi-segmental model of the upper body in the vibratory environment. The goals are to identify the characteristics of upper body reach movements and to investigate vibration-induced changes in joint kinematics. Thirteen subjects reached to four target directions in the right hemisphere.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

The Effect of Turbulence on the Hydrocarbon Emissions from Combustion in a Constant Volume Reactor

1984-02-01
840366
A cylindrical combustion bomb with dynamic charging system and electro-hydraulic sampling valve is used to study the effects of turbulence on hydrocarbon (HC) emissions from a quench layer and from artificial crevices. The turbulence level is varied by changing the delay time between induction of combustible charge and ignition. Propane-air mixtures were studied over an initial pressure range of 150 to 500 kPa and equivalence ratios of 0.7 to 1.4. Sampling valve experiments show that quench-layer fuel hydrocarbons are extensively oxidized within 5 ms of flame arrival under laminar conditions and that turbulence further reduces the already low level. Upper limit estimates of the residual wall layer HC concentration show that residual quench layer hydrocarbons are only a small fraction of the exhaust HC emission.
Journal Article

The Effect of EGR Dilution on the Heat Release Rates in Boosted Spark-Assisted Compression Ignition (SACI) Engines

2020-04-14
2020-01-1134
This paper presents an experimental investigation of the impact of EGR dilution on the tradeoff between flame and end-gas autoignition heat release in a Spark-Assisted Compression Ignition (SACI) combustion engine. The mixture was maintained stoichiometric and fuel-to-charge equivalence ratio (ϕ′) was controlled by varying the EGR dilution level at constant engine speed. Under all conditions investigated, end-gas autoignition timing was maintained constant by modulating the mixture temperature and spark timing. Experiments at constant intake pressure and constant spark timing showed that as ϕ′ is increased, lower mixture temperatures are required to match end-gas autoignition timing. Higher ϕ′ mixtures exhibited faster initial flame burn rates, which were attributed to the higher laminar flame speeds immediately after spark timing and their effect on the overall turbulent burning velocity.
X