Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wavelet-based Modification of Impulsive Sound Character and Application to Diesel Sound Quality

2005-05-16
2005-01-2271
A wavelet-based technique for reducing the impulsive character of sound recordings is presented. The amount of impulsive content removed may be adjusted by varying a statistical threshold. The technique is validated for a diesel idle sound-quality application. The wavelet-based modification produces a substantial decrease in impulsive character as verified by an objective sound-quality metric for engine “ticking”. Informal subjective assessment of the modified results found them to be realistic and free from artifacts. The procedure is expected to be useful for sound-quality simulation and target-setting for diesel powertrain noise and other automotive sounds containing both impulsive and non-impulsive content.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wavelet-Based Visualization of Impulsive and Transient Sounds in Stationary Background Noise

2001-04-30
2001-01-1475
Scalograms based on shift-invariant orthonormal wavelet transforms can be used to analyze impulsive and transient sounds in the presence of more stationary sound backgrounds, such as wind noise or drivetrain noise. The visual threshold of detection for impulsive features on the scalogram (signal energy content vs. time and frequency,) is shown to be similar to the audible threshold of detection of the human auditory system for the corresponding impulsive sounds. Two examples of impulsive sounds in a realistic automotive sound background are presented: automotive interior rattle in a vehicle passenger compartment, and spark knock recorded in an engine compartment.
Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Technical Paper

Virtual Verification of Wrecker Tow Requirements

2020-04-14
2020-01-0766
Under various real-world scenarios, vehicles can become disabled and require towing. OEMs allow a few options for vehicle wrecker towing that include wheel lift tow using a stinger or towing on a flatbed. These methods entail multiple loading events that need to be assessed for damage to the towed vehicle. OEMs have several testing and evaluation methods in place for those scenarios with majority requiring physical vehicle prototypes. Recent focus to reduce product development time and cost has replaced the need for prototype testing with analytical verification methods. In this paper, the CAE method involving multibody dynamic simulation (MBDS) as well as finite element analysis (FEA) of vehicle flatbed operation, winching onto a flatbed, and stinger-pull towing are discussed.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Technical Paper

Vehicle Airborne Noise Analysis Using the Energy Finite Element Method

2013-05-13
2013-01-1998
The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration and the interior noise level of complex structural-acoustic systems by solving numerically governing differential equations with energy densities as primary variables. In this paper a complete simulation process for evaluating airborne noise in an automotive vehicle is presented and validated through extensive comparison to test data. The theoretical elements associated with the important paths of the noise transfer from the exterior of the vehicle to the interior acoustic space are discussed. The steps required for developing an EFEA model for a vehicle are presented. The model is developed based on the physical construction of the vehicle system and no test measurements are utilized for adjusting the numerical model.
Technical Paper

Variable Cam Timing (VCT) Knock Root Cause Analysis and Failure Mode Prevention

2019-01-18
2019-01-5003
Knock in the Camshaft Torque Actuated (CTA) in the Variable Cam Timing (VCT) engine can be a NVH issue and a source of customer complaint. The knock noise usually occurs during hot idle when the VCT phaser is in the locked position and the locking pin is engaged. During a V8 engine development at Ford, the VCT knock noise was observed during hot idle run. In this paper investigation leading to the identification of the root cause through both test and the CAE simulation is presented. The key knock contributors involving torque and its rate of change in addition to the backlash level are discussed. A CAE metric to assess knock occurrence potential for this NVH failure mode is presented. Finally a new design feature in terms of locking pinhole positioning to mitigate or eliminate the knock is discussed.
Technical Paper

Valvetrain Ticking Noise Analysis

2017-03-28
2017-01-1057
Valvetrain ticking noise is one of the key failure modes in noise vibration harshness (NVH) evaluation at idle. It affects customer satisfaction inversely. In this paper, the root cause of the valvetrain ticking noise and key parameters that impact ticking noise will be presented. A physics based math model has been developed and integrated into a parameterized multi-body dynamic model. The analytical prediction has been correlated with testing data. Valvetrain ticking noise control is discussed.
Technical Paper

Validation of the EFEA Method through Correlation with Conventional FEA and SEA Results

2001-04-30
2001-01-1618
The Energy Finite Element Analysis(EFEA) is a recent development for high frequency vibro-acoustic analysis, and constitutes an evolution in the area of high frequency computations. The EFEA is a wave based approach, while the SEA is a modal based approach. In this paper the similarities in the theoretical development of the two methods are outlined. The main scope of this paper is to establish the validity of the EFEA by analyzing several complex structural-acoustic systems. The EFEA solutions are compared successfully to SEA results and to solutions obtained from extremely dense conventional FEA models.
Technical Paper

Validation of an EFEA Formulation for Computing the Vibrational Response of Complex Structures

2007-05-15
2007-01-2324
This paper presents a validation case study for an Energy Finite Element Analysis (EFEA) formulation through comparison to test data. The EFEA comprises a simulation tool for computing the structural response of a complex structure and the amount of the radiated power. The EFEA formulation presented in this paper can account for periodic stiffeners, for partial fluid loading effects on the outer part of the structure, and for internal compartments filled with heavy fluid. In order to validate these modeling capabilities of the EFEA two 1/8th scale structures representing an advanced double hull design and a conventional hull design of a surface ship are analyzed. Results for the structural vibration induced on the outer bottom part of the structure are compared to available test data. The excitation is applied at two different locations of the deck structure. Good correlation is observed between the numerical results and the test data.
Technical Paper

Using Dimensional Analysis to Build a Better Transfer Function

2004-03-08
2004-01-1129
A key ingredient in designing products that are more robust is a thorough knowledge of the physics of the ideal function of those products and the physics of the failure modes of those products. We refer to the mathematical functions describing this physics as the transfer functions for that product. Dimensional analysis (DA) is a well known, but often overlooked, tool for reducing the number of experiments needed to characterize a physical system. In this paper, we demonstrate how the application of DA can be used to reduce the size of a DOE needed to estimate transfer functions experimentally. Furthermore, the transfer function generated using DOEs with DA tend to be more general than those generated using larger DOEs directly on the design parameters. With ever-increasing competitive pressure and reduced product development time, a tool such as DA, which can dramatically reduce experimental cost, is an incredibly valuable addition to an engineers toolbox.
Technical Paper

Using Computer Aided Engineering to Find and Avoid the Steering Wheel “Nibble” Failure Mode

2005-04-11
2005-01-1399
The paradigm for utilizing computer-aided engineering (CAE) to analyze automotive steering and suspension designs is rapidly changing. CAE's role has expanded beyond mere analysis to designing and improving product reliability and robustness. This paper presents an approach for avoiding the steering wheel nibble failure mode by improving robustness and therefore reliability through the use of CAE. For this paper, reliability is the ability of the system to avoid failure modes. A failure mode is any customer perceived deviation from ideal and avoiding failure modes naturally improves reliability. [1]
Technical Paper

Use of Statistical Energy Analysis in Vehicle NVH Design Cycle

2010-10-17
2010-36-0525
Statistical Energy Analysis (SEA) is used to predict high-frequency acoustic and vibration response in vehicle NVH design. Early in the design cycle prototype hardware is not yet available for testing and the geometry is still too poorly defined and changing too quickly for Finite Element Analysis or Boundary Element Analysis to be an effective NVH analysis tool. For most of the concept phase and early design phase, SEA uniquely offers the ability to virtually predict the main noise transfer paths and to support target setting for component and full vehicle NVH design. At later stages of the design process, SEA combines with NVH testing to provide more accurate predictions and to provide guidance for more efficient testing. This paper describes the established uses of SEA in the vehicle industry and presents an overview of the NVH design cycle and how SEA is used to support NVH development at different stages.
Technical Paper

Use of Polyurethane Material Models for Simulating Leg-Form Impact in Different Explicit Finite Element Codes

1998-09-29
982359
Compressible plastic foams are used throughout the interior and bumper systems of modern automobiles for safety enhancement and damage prevention. Consequently, modeling of foams has become very important for automobile engineers. To date, most work has focused on predicting foam performance up to approximately 80% compression. However, in certain cases, it is important to predict the foam under maximum compression, or ‘bottoming-out.’ This paper uses one such case-a thin low-density bumper foam impacted by a pedestrian leg-form at 11.1 m/s-to investigate the ‘bottoming-out’ phenomenon. Multiple material models in three different explicit Finite Element Method (FEM) packages (RADIOSS, FCRASH, and LS-DYNA) were used to predict the performance. The finite element models consisted of a foam covered leg-form impacting a fixed bumper beam with a foam energy absorber.
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Journal Article

Uncertainty Propagation in Multi-Disciplinary Design Optimization of Undersea Vehicles

2008-04-14
2008-01-0218
In this paper the development of statistical metamodels and statistical fast running models is presented first. They are utilized for propagating uncertainties in a multi-discipline design optimization process. Two main types of uncertainty can be considered in this manner: uncertainty due to variability in design variables or in random parameters; uncertainty due to the utilization of metamodels instead of the actual simulation models during the optimization process. The value of the new developments and their engagement in multi-discipline design optimization is demonstrated through a case study. An underwater vehicle is designed under four different disciplines, namely, noise radiation, self-noise due to TBL excitation, dynamic response due to propulsion impact loads, and response to an underwater detonation.
Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Transient Non-linear FEA and TMF Life Estimates of Cast Exhaust Manifolds

2003-03-03
2003-01-0918
A transient nonlinear Finite Element Analysis (FEA) method has been developed to simulate the inelastic deformation and estimate the thermo-mechanical fatigue life of cast iron and cast steel exhaust manifolds under dynamometer test conditions. The FEA uses transient heat transfer analysis to simulate the thermal loads on the manifold, and includes the fasteners, gasket and portion of the cylinder head. The analysis incorporates appropriate elastic-plastic and creep material models. It is shown that the creep deformation is the most single critical component of inelastic deformation for cast iron manifold ratcheting, gasket sealing, and crack initiation. The predicted transient temperature field and manifold deformation of the FEA model compares exceptionally well with two experimental tests for a high silicon-molybdenum exhaust manifold.
X