Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Web-Based Vehicle Performance Simulations Using Microsoft Excel

2001-03-05
2001-01-0335
Although computer models for vehicle and sub-system performance simulations have been developed and used extensively in the past several decades, there is currently a need to enhance the overall availability of these types of tools. Increasing demands on vehicle performance targets have intensified the need to obtain rapid feedback on the effects of vehicle modifications throughout the entire development cycle. At the same time, evolution of the PC and development of Web-based applications have contributed to the availability, accessibility, and user-friendliness of sophisticated computer analysis. Web engineering is an ideal approach in supporting globalization and is a cost-effective design-analysis integration business strategy. There is little doubt that this new approach will have positive impacts on product cost, quality, and development cycle time. This paper will show how Microsoft Excel and the Web can be powerful and effective tools in the development process.
Technical Paper

Using Deep Learning to Predict the Engine Operating Point in Real-Time

2021-04-06
2021-01-0186
The engine operating point (EOP), which is determined by the engine speed and torque, is an important part of a vehicle's powertrain performance and it impacts FC, available propulsion power, and emissions. Predicting instantaneous EOP in real-time subject to dynamic driver behaviour and environmental conditions is a challenging problem, and in existing literature, engine performance is predicted based on internal powertrain parameters. However, a driver cannot directly influence these internal parameters in real-time and can only accommodate changes in driving behaviour and cabin temperature. It would be beneficial to develop a direct relationship between the vehicle-level parameters that a driver could influence in real-time, and the instantaneous EOP. Such a relationship can be exploited to dynamically optimize engine performance.
Technical Paper

Simulating an Integrated Business Environment that Supports Systems Integration

2010-10-19
2010-01-2305
This paper describes the design and application of a business simulation to help train employees about the new business model and culture that for an automotive supplier company that designs connected vehicle and other advanced electronic products for the automotive industry. The simulation, called SIM-i-TRI, is a three to four day collaborative learning activity that simulates the executive, administrative, engineering, manufacturing, and marketing functions in three divisions of a manufacturer that supplies parts and systems to customers in industries similar to the automotive industry. It was originally designed to support the new employee orientation at the Tier 1 supplier and to provide the participants a safe environment to practice the lessons from the orientation. The simulation has been used several times a month in the US, England, and Germany for over four years.
Technical Paper

Investigation of Active Steering/Wheel Torque Control at the Rollover Limit Maneuver

2004-05-04
2004-01-2097
It is well understood that driver's steering input strongly affects lateral vehicle dynamics and excessive steering command may result in unstable vehicle motion. In a certain driving condition, it is possible for a skilled driver to prevent vehicle rollover with better perceptive capability of judging conditions and responding faster with smooth compensatory actions. This paper investigates the possibility of using active steering and wheel torque control to assist drivers in avoiding vehicle rollovers in emergency situations. The effectiveness of steering control alone and combination of steering/wheel torque control in recovery from unstable vehicle roll condition was demonstrated through simulation of both low and high vehicle speeds.
Technical Paper

Insightful Representations of Roll Plane Model Stability Limits

2006-04-03
2006-01-1284
Yaw and roll stability limits are derived for three quasi-static roll plane models: rigid vehicle, suspended vehicle, and compliant tire vehicle. A generalized stability equation is identified that fits the stability limits for each model. This generalized stability equation leads to the definition of two new parameters referred to as the generalized superelevation and generalized center of gravity height. These parameters are shown to be physically meaningful. The use of linearizing assumptions is minimized and road superelevation is included, resulting in a more complete equation for each stability limit. Each derived stability limit is then compared and contrasted to the typical representations found in the literature.
Technical Paper

Influence of Suspension Properties on Vehicle Roll Stability

2006-02-14
2006-01-1950
Vehicle roll dynamics is strongly influenced by suspension properties such as roll center height, roll steer and roll camber. In this paper, the effects of suspension properties on vehicle roll response has been investigated using a multi-body vehicle dynamics program. A full vehicle model equipped with front MacPherson and rear multilink suspensions has been used for the study. Roll dynamics of the vehicle were evaluated by performing fixed timing fishhook maneuver in the simulation. Variations of vehicle roll response due to changes in the suspension properties were assessed by quantitatively analyzing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of Experiments has been used for identifying critical hardpoints affecting the suspension parameters and optimization techniques were employed for parameter optimization.
Technical Paper

Incorporating Hard Disks in Vehicles- Usages and Challenges

2006-04-03
2006-01-0814
With recent advances in microprocessors and data storage technologies, vehicle users can now bring or access large amounts of data in vehicles for purposes such as communication (e.g. e-mail, phone books), entertainment (e.g. music and video files), browsing and searching for information (e.g. on-board computers and internet). The challenge for the vehicle designer is how to design data displays and retrieval methods to allow data search and manipulation tasks by managing driver workload at safe acceptable levels. This paper presents a data retrieval menu system developed to assess levels of screens (depth of menu) that may be needed to select required information when a vehicle is equipped with the capability to access audio files, cell phone, PDA, e-mail and “On-star” type functions.
Technical Paper

How the University of Michigan-Dearborn Prepares Engineering Graduates for Careers in Automotive Systems Engineering

2010-10-19
2010-01-2327
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Technical Paper

Graduate Education in Manufacturing Engineering for the Automotive Industry of the Future

1999-05-10
1999-01-1638
This paper discusses the evolution of graduate education in manufacturing engineering and the curriculum needed to educate manufacturing engineers in the automotive industry. This paper examines the master's and doctoral curriculum in manufacturing engineering at the University of Michigan-Dearborn. Finally, it proposes future direction for graduate education in manufacturing that will be needed for the automotive industry of the future.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Technical Paper

Development of Specifications for the UM-D's Low Mass Vehicle for China, India and the United States

2005-04-11
2005-01-1027
This paper presents results of a research project conducted to develop a methodology and to refine the specifications of a small, low mass, low cost vehicle being developed at the University of Michigan-Dearborn. The challenge was to assure that the design would meet the needs and expectations of customers in three different countries, namely, China, India and the United States. U.S, Chinese and Indian students studying on the university campus represented customers from their respective countries for our surveys and provided us with the necessary data on: 1) Importance of various vehicle level attributes to the entry level small car customer, 2) Preferences to various features, and 3) Direction magnitude estimation on parameters to size the vehicle for each of the three markets.
Technical Paper

Comparison of Driver Behavior and Performance in Two Driving Simulators

2008-04-14
2008-01-0562
This paper presents results of a study conducted to compare driving behavior and performance of drivers in two different fixed-base driving simulators (namely, FAAC and STI) while performing a same set of distracting tasks under geometrically similar freeway and traffic conditions. The FAAC simulator had a wider three-screen road view with steering feedback as compared to the STI simulator which had a single screen and narrower road view and had no steering feedback. Twenty four subjects (12 younger and 12 mature) drove each simulator and were asked to perform a set of nine different tasks involving different distracting elements such as, using a cell phone, operating the car radio, retrieving and selecting a map from map pocket in the driver's door, collecting coins to pay toll, etc.
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
X