Refine Your Search

Topic

Search Results

Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

A Transportable Instrumentation Package for In-Vehicle On-Road Data Collection for Driver Research

2013-04-08
2013-01-0202
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Technical Paper

A Value Analysis Tool for Automotive Interior Door Trim Panel Materials and Process Selection

2007-04-16
2007-01-0453
This paper describes a computerized value analysis tool (VAT) developed to aid automotive interior designers, engineers and planners to achieve the high levels of perceived quality of materials used in automotive door trim panels. The model requires a number of inputs related to types of materials, their manufacturing processes and customer perceived quality ratings, costs and importance of materials, features located in different areas of the door trim panel, etc. It allows the user to conduct iterative evaluation of total cost, total weighted customer perceived quality ratings, and estimates of perceived value (perceived quality divided by cost) for different door trim areas as well as the entire door trim panel. The VAT, thus, allows value and cost management related to materials and processing choices for automotive interiors.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

Effect of Biodiesel on the Tensile Properties of Nylon-6

2012-04-16
2012-01-0752
With increasing use of biofuels in the automotive industry, it has become necessary to evaluate their effects on the properties of polymers used in the fuel delivery systems. In this study, we have considered the effect of biodiesel on the tensile properties of nylon-6, 30% E-glass fiber reinforced nylon-6 and impact-modified nylon-6. The tensile specimens were immersed in 100% biodiesel for up to 7 days before determining their tensile properties. Another set of specimens were immersed in 100% biodiesel under stressed condition and then their tensile properties were determined. The absorption of biodiesel and their effects on tensile modulus, tensile strength and failure strain are reported in this paper.
Technical Paper

Formability Analysis of Aluminum-Aluminum and AA5182/Polypropylene/AA5182 Laminates

2023-04-11
2023-01-0731
Owing to their weight saving potential and improved flexural stiffness, metal-polymer-metal sandwich laminates are finding increasing applications in recent years. Increased use of such laminates for automotive body panels and structures requires not only a better understanding of their mechanical behavior, but also their formability characteristics. This study focuses on the formability of a metal–polymer-metal sandwich laminate that consists of AA5182 aluminum alloy as the outer skin layers and polypropylene (PP) as the inner core. The forming limit curves of Al/PP/Al sandwich laminates are determined using finite element simulations of Nakazima test specimens. The numerical model is validated by comparing the simulated results with published experimental results. Strain paths for different specimen widths are recorded.
Technical Paper

Formability Analysis of Thermoplastic Lightweight Fiber-Metal Laminates

2006-04-03
2006-01-0118
This study investigates numerically and experimentally the formability of two Fiber-Metal Laminate systems based on a thermoplastic self-reinforced polypropylene and a glass fiber polypropylene composite materials. These hybrid systems consist of layered arrangements of aluminum 2024-T3 sheets and thermoplastic-based composite materials. Flat panels were manufactured using a fast one step cold press manufacturing procedure. Punch-stretch forming tests and numerical simulations were performed in order to evaluate the formability of the hybrid systems. Experimental and simulation results revealed that the self reinforced thermoplastic composite-based Fiber-Metal Laminate exhibit excellent forming properties similar to that of the monolithic aluminum alloy of comparable thickness.
Technical Paper

Formability of Aluminum Tailor-Welded Blanks

2000-03-06
2000-01-0772
The use of tailor welded blanks (TWBs) in automotive applications is increasing due to the potential of weight and cost savings. These blanks are manufactured by joining two or more sheets of dissimilar gauge, properties, or both, to form a lighter blank of desired strength and stiffness. This allows an engineer to “tailor” the properties of the blank to meet the design requirements of a particular panel. TWBs are used in such places as door inner panels, lift gates, and floor pans. Earlier investigations of the use of TWBs targeted steel alloys, but the potential of further weight savings with aluminum TWBs is gaining interest in the automotive industry. Unlike steel TWBs, the welds in aluminum TWBs are not significantly stronger than the base material and are occasionally the fracture site. Additionally, the reduced formability of aluminum, as compared with drawing-quality steels, makes the application of aluminum TWBs more difficult than steel TWBs.
Technical Paper

Formability of Ti-TWBs at Elevated Temperatures

2006-04-03
2006-01-0353
In this paper, the formability of Ti-TWBs at different elevated temperatures is experimentally investigated. Ti-TWBs made of Ti-6Al-4V sheets with thicknesses of 0.7mm and 1.0mm are manufactured. Then, the tensile test and forming test at elevated temperatures, ranging from room temperature to 600°C, have been carried out to determine the mechanical properties and the formability of the prepared Ti-TWBs respectively. The effects of elevated temperatures on both the forming and failure behaviors of the Ti-TWBs are examined by comparing with that of the Ti-6Al-4V base metal. It is found that the formability of the Ti-TWBs at room temperature with a dissimilar thickness combination is lower than that of their base metal, whilst the formability of both the Ti-TWBs and their base metal increases with increasing forming temperature. In addition, failures have often been found at the thinner base metal during the Ti-TWB forming, provided that the quality weld is attained without defect.
Technical Paper

How the University of Michigan-Dearborn Prepares Engineering Graduates for Careers in Automotive Systems Engineering

2010-10-19
2010-01-2327
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Technical Paper

Independent Control of All-Wheel-Drive Torque Distribution

2004-05-04
2004-01-2052
The sophistication of all-wheel-drive technology is approaching the point where the drive torque to each wheel can be independently controlled. This potentially offers vehicle handling enhancements similar to those provided by Dynamic Stability Control, but without the inevitable reduction in vehicle acceleration. Independent control of all-wheel-drive torque distribution would therefore be especially beneficial under acceleration close to the limit of stability. A vehicle model of a typical sports sedan was developed in Simulink, with fully independent control of torque distribution. Box-Behnken experimental design was employed to determine which torque distribution parameters have the greatest impact on the vehicle course and acceleration. A proportional-integral control strategy was implemented, applying yaw rate feedback to vary the front-rear torque distribution, and lateral acceleration feedback to adjust the left-right distribution.
Technical Paper

Interfacial Fracture in Environmentally Friendly Thermoplastic Composite-Metal Laminates

2006-04-03
2006-01-0117
This paper investigates the interfacial fracture properties of composite-metal laminates by using the single-cantilever beam testing technique. The hybrid systems consisted of a layer of aluminum alloy (6061 or 2024-T3) bonded to polypropylene based composites. In this study, two non-chromate surface treatments were applied to the aluminum substrates: SafeGard CC-300 Chrome free seal (from Sanchem Inc.) and TCP-HF (from Metalast International Inc.). These are environmentally friendly surface treatments that enhance the adhesion and corrosion resistance of aluminum alloys. Flat hybrid panels were manufactured using a one step cold press manufacturing procedure. Single cantilever bend specimens were cut from the panels and tested at 1mm/min. Results have shown that the CC-300 treated Al 2024-T3 alloy and Twintex exhibited higher interfacial fracture energy values.
Technical Paper

LS-DYNA3D Simulation of Sheet Metal Forming using Damage Based User Subroutine

2001-03-05
2001-01-1129
LS-DYNA3D has been widely used to perform computer simulation of sheet metal forming. In the material library of LS-DYNA3D there are a number of user defined material models. In order to take full advantage of the material subroutines, it is important for the users to be able to display user defined history variables in the post processing and to establish user-defined failure criterion. In this report, the development of a damage coupled plastic model is firstly described. The damage model is then programmed in a user defined material subroutine. This is followed by performing finite element simulation of sheet metal forming with the LS-DYNA3D that has incorporated the damage coupled plastic model. The way to display the user defined history variables and how to deal with the failure criterion during the postprocessing of ETA/DYNAFORM are described. History variable distributions at several time steps are displayed and discussed in this paper.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Paint Bake Influence on AA7075 and AA7085

2017-03-28
2017-01-1265
The typical paint bake cycle includes multiple ramps and dwells of temperature through e-coat, paint, and clear coat with exposure equivalent to approximately 190°C for up to 60 minutes. 7xxx-series aluminum alloys are heat treatable, additional thermal exposure such as a paint bake cycle could alter the material properties. Therefore, this study investigates the response of three 7xxx-series aluminum alloys with respect to conductivity, hardness, and yield strength when exposed to three oven curing cycles of a typical automotive paint operation. The results have indicated that alloy composition and artificial aging practice influence the material response to the various paint bake cycles.
Technical Paper

Predicting Forming Limit Curve Using a New Ductile Failure Criterion

2017-03-28
2017-01-0312
Based on findings from micromechanical studies, a Ductile Failure Criterion (DFC) was proposed. The proposed DFC treats localized necking as failure and critical damage as a function of strain path and initial sheet thickness. Under linear strain path assumption, a method to predict Forming Limit Curve (FLC) is derived from this DFC. With the help of predetermined effect functions, the method only needs a calibration at uniaxial tension. The approach was validated by predicting FLCs for sixteen different aluminum and steel sheet metal materials. Comparison shows that the prediction matches quite well with experimental observations in most cases.
Technical Paper

Prediction and Experimental Validation of Path-Dependent Forming Limit Diagrams of VDIF Steel

1998-02-23
980079
Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
Technical Paper

Prediction of Forming Limit Diagram with Damage Analysis

1996-02-01
960598
Based on the theory of damage mechanics, an orthotropic damage model for the prediction of forming limit diagram (FLD) is developed. The conventional method of FLD used to predict localized necking adopts two fundamentally different approaches. Under biaxial loading, the Hill's plasticity method is often chosen when α (= ε2/ε1) < 0. On the other hand, the M-K method is adopted for the prediction of localized necking when α > 0 or the biaxial stretching of sheet metal is pronounced. The M-K method however suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The orthotropic damage model developed for predicting the FLD is based on the anisotropic damage model recently proposed by Chow et al (1993). The model is extended to take into account, during the sheet forming process, orthotropic plasticity and damage. The orthotropic FLD model consists of the constitutive equations of elasticity and plasticity coupled with damage.
Technical Paper

Prediction of Limit Strains in Sheet Metal Forming Under Complex Strain History

2000-03-06
2000-01-0776
In this paper, a predictive method is developed to determine the forming limit strain and fracture limit strain in a stamped automotive component subjected to a complex strain history that would be experienced during an actual forming operation. The method of analysis is based on a damage mechanics model developed recently by the authors and extended to take into account the hysteretic effects of the principal strain and damage planes. The forming limit and fracture limit strains are then predicted using the modified damage model. Satisfactory predictions have been achieved for a practical case where the complex strain history is prescribed based an actual stamping operation.
X