Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

2019-04-02
2019-01-0961
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Towards Human Friendly Hydraulics - Passive Teleoperation of Hydraulic Equipment Using a Force Feedback Joystick

2002-03-19
2002-01-1492
Hydraulic systems, as power source and transmission, offer many advantages over electromechanical or purely mechanical counterparts in terms of power density, flexibility and portability. Many hydraulic systems require touching and contacting the physical environments; and many of these systems are directly controlled by human. If hydraulic systems are passive, they would be safer to interact with, and easier for human to control. In this paper, we describe our current research in developing bilateral passive teleoperated hydraulic machines which a human operator controls via a force feedback joystick. Two key developments are 1) methodologies to passify the electrohydraulic valves as a two-port device, and 2) the passive teleoperation controllers.
Technical Paper

The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines

2017-10-08
2017-01-2234
Fundamental engine research is primarily conducted under steady-state conditions, in order to better describe boundary conditions which influence the studied phenomena. However, light-duty automobiles are operated, and tested, under heavily transient conditions. This mismatch between studied conditions and in-use conditions is deemed acceptable due to the fundamental knowledge gained from steady-state experiments. Nonetheless, it is useful to characterize the conditions encountered during transient operation and determine if the governing phenomena are unduly influenced by the differences between steady-state and transient operation, and further, whether transient behavior can be reasonably extrapolated from steady-state behavior. The transient operation mode used in this study consists of 20 fired cycles followed by 80 motored cycles, operating on a continuous basis.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Stochastic Knock Detection Model for Spark Ignited Engines

2011-04-12
2011-01-1421
This paper presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. The SKD set consists of a Knock Signal Simulator (KSS) as the plant model for the engine and a Knock Detection Module (KDM). The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies.
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects of Equivalence Ratio and Intake Boost

2018-04-03
2018-01-1252
Low-temperature gasoline combustion (LTGC) engines can deliver high efficiencies, with ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM). However, controlling the combustion timing and maintaining robust operation remains a challenge for LTGC engines. One promising technique to overcoming these challenges is spark assist (SA). In this work, well-controlled, fully premixed experiments are performed in a single-cylinder LTGC research engine at 1200 rpm using a cylinder head modified to accommodate a spark plug. Compression ratios (CR) of 16:1 and 14:1 were used during the experiments. Two different fuels were also tested, with properties representative of premium- and regular-grade market gasolines. SA was found to work well for both CRs and fuels. The equivalence ratio (ϕ) limits and the effect of intake-pressure boost on the ability of SA to compensate for a reduced Tin were studied. For the conditions studied, ϕ=0.42 was found to be most effective for SA.
Technical Paper

Solid Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation

2018-04-03
2018-01-0359
In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load.
Technical Paper

Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels

2006-04-03
2006-01-0629
This work explores the potential of partial fuel stratification to smooth HCCI heat-release rates at high load. A combination of engine experiments and multi-zone chemical-kinetics modeling was used for this. The term “partial” is introduced to emphasize that care is taken to supply fuel to all parts of the in-cylinder charge, which is essential for reaching high power output. It was found that partial fuel stratification offers good potential to achieve a staged combustion event with reduced pressure-rise rates. Therefore, partial fuel stratification has the potential to increase the high-load limits for HCCI/SCCI operation. However, for the technique to be effective the crank-angle phasing of the “hot” ignition has to be sensitive to the local ϕ. Sufficient sensitivity was observed only for fuel blends that exhibit low-temperature heat release (like diesel fuel).
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Journal Article

Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine

2017-03-28
2017-01-0662
Spark-ignition (SI) engine efficiency is typically limited by fuel auto-ignition resistance, which is described in practice by the Research Octane Number (RON) and the Motor Octane Number (MON). The goal of this work is to assess whether fuel properties (i.e. RON, MON, and heat of vaporization) are sufficient to describe the antiknock behavior of varying gasoline formulations in modern engines. To this end, the auto-ignition resistance of three compositionally dissimilar gasoline-like fuels with identical RON values and varying or non-varying MON values were evaluated in a modern, prototype, 12:1 compression ratio, high-swirl (by nature of intake valve deactivation), directly injected spark ignition (DISI) engine at 1400 RPM. The three gasolines are an alkylate blend (RON=98, MON=97), a blend with high aromatic content (RON=98, MON=88), and a blend of 30% ethanol by volume with a gasoline BOB (RON=98, MON=87; see Table 2 for details).
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

1995-02-01
950236
A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Quantitative Measurements of Residual and Fresh Charge Mixing in a Modern SI Engine Using Spontaneous Raman Scattering

1999-03-01
1999-01-1106
Line-imaging of Raman scattered light is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (premixed C3H8) in a modern 4-valve spark-ignition engine operating at idle. The measurement volume consists of 16 adjacent sub-volumes, each 0.27 mm in diameter × 0.91 mm long, giving a total measurement length of 14.56 mm. Measurements are made 3 mm under the centrally-located spark plug, offset 3 mm from the spark plug center towards the exhaust valves. Data are taken in 15 crank angle degree increments starting from top center before the intake stroke (-360 CAD) through top center of the compression stroke (0 CAD).
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Journal Article

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

2011-04-12
2011-01-1359
Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock. This study focuses on three factors, engine speed, intake temperature, and fuel composition, that can affect the pre-ignition processes of two-stage fuels and consequently affect their performance with partial fuel stratification. A model fuel consisting of 73 vol.% isooctane and 27 vol.% of n-heptane (PRF73), which was previously compared against neat isooctane to demonstrate the superior performance of two-stage fuels over single-stage fuels with partial fuel stratification, was first used to study the effects of engine speed and intake temperature.
Technical Paper

Overview of Engine Combustion Research at Sandia National Laboratories

1999-04-27
1999-01-2246
The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.
X