Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Technical Paper

Transient Cavitating Flow Simulations Inside a 2-D VCO Nozzle Using the Space-Time CE/SE Method

2001-05-07
2001-01-1983
Cavitating flows inside a two-dimensional valve covered orifice (VCO) nozzle were simulated by using the Space-Time Conservation Element and Solution Element (CE/SE) method in conjunction with a homogeneous equilibrium cavitation model. As a validation for present model, cavitation over a NACA0015 hydrofoil was predicted and compared with previous simulation results as well as experimental observations. The model was then used to investigate the effects on internal cavitating flows of different nozzle design parameters, such as the hole size, hole aspect-ratio, hydro-erosion radius, and orifice inclination. Under different conditions, cavitating flows through fuel injectors generated hydraulic flip, supercavitation, full cavitation, and cyclical cavitation phenomena, which are commonly observed in experiments.
Technical Paper

Towards Human Friendly Hydraulics - Passive Teleoperation of Hydraulic Equipment Using a Force Feedback Joystick

2002-03-19
2002-01-1492
Hydraulic systems, as power source and transmission, offer many advantages over electromechanical or purely mechanical counterparts in terms of power density, flexibility and portability. Many hydraulic systems require touching and contacting the physical environments; and many of these systems are directly controlled by human. If hydraulic systems are passive, they would be safer to interact with, and easier for human to control. In this paper, we describe our current research in developing bilateral passive teleoperated hydraulic machines which a human operator controls via a force feedback joystick. Two key developments are 1) methodologies to passify the electrohydraulic valves as a two-port device, and 2) the passive teleoperation controllers.
Technical Paper

The Burning Velocity in a CFR Engine with Different Turbulent Flow Fields Generated by Intake Valves

1980-06-01
800860
An equation has been derived to calculate the burning velocity in a CFR engine from the measured flame speed under different turbulent flow fields. The turbulence is generated during the intake stroke as the fresh charge flows through different perforated 360° shrouded intake valves. The shrouds have holes of different sizes, but of the same total flow area. Results show that these valves decrease the cycle-to-cycle variation and produce higher burning velocities than conventional valves, particularly at higher engine speeds. The burning velocity depends on the Reynolds number as well as the turbulence scale.
Technical Paper

Temperature Impact on Modeling and Control of Lean NOx Trap

2003-03-03
2003-01-1163
Gasoline Direct Injection (GDI) engine has a significant fuel economy improvement over the traditional port fuel injection engine. The tradeoff for this benefit is excessive exhaust emissions, especially NOx. Three-way-catalyst (TWC) is inefficient to treat NOx emission during lean operation. So Lean NOx Trap (LNT) is invented for NOx aftertreatment and it has both storage mode and purge mode. Research on modeling and control of LNT has been conducted, but it is still lack of the essential information on the temperature effect. This research focuses on the impact of trap temperature on LNT storage time, purge time and fuel economy. The mechanism of temperature effect on LNT is investigated at first. Then the temperature control strategy based on fuel economy improvement is proposed.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Solid Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation

2018-04-03
2018-01-0359
In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load.
Technical Paper

Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper

1995-02-01
950236
A system has been developed that allows near real time measurements of total, volatile, and nonvolatile particle concentrations in engine exhaust. It consists of a short section of heated catalyst, a cooling coil, and an electrical aerosol analyzer. The performance of this catalytic stripper system has been characterized with nonvolatile (NaCl), volatile sulfate ((NH4)2 SO4), and volatile hydrocarbon (engine oil) particles with diameters ranging from 0.05-0.5 μm. The operating temperature of 300°C gives essentially complete removal of volatile sulfate and hydrocarbon particles, but also leads to removal of 15-25% of solid particles. This system has been used to determine total, volatile, and nonvolatile particle concentrations in the exhaust of a Diesel engine and a spark ignition engine. Volatile volume fractions measured in Diesel exhaust with the catalytic stripper system increased from 19-65% as the equivalence ratio (load) decreased from 0.64-0.13.
Technical Paper

Quantitative Measurements of Residual and Fresh Charge Mixing in a Modern SI Engine Using Spontaneous Raman Scattering

1999-03-01
1999-01-1106
Line-imaging of Raman scattered light is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (premixed C3H8) in a modern 4-valve spark-ignition engine operating at idle. The measurement volume consists of 16 adjacent sub-volumes, each 0.27 mm in diameter × 0.91 mm long, giving a total measurement length of 14.56 mm. Measurements are made 3 mm under the centrally-located spark plug, offset 3 mm from the spark plug center towards the exhaust valves. Data are taken in 15 crank angle degree increments starting from top center before the intake stroke (-360 CAD) through top center of the compression stroke (0 CAD).
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Technical Paper

Overview of Engine Combustion Research at Sandia National Laboratories

1999-04-27
1999-01-2246
The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.
Technical Paper

Optimizing the Scavenging System for a Two-Stroke Cycle, Free Piston Engine for High Efficiency and Low Emissions: A Computational Approach

2003-03-03
2003-01-0001
A free piston internal combustion (IC) engine operating on high compression ratio (CR) homogeneous charge compression ignition (HCCI) combustion is being developed by Sandia National Laboratories to significantly improve the thermal efficiency and exhaust emissions relative to conventional crankshaft-driven SI and Diesel engines. A two-stroke scavenging process recharges the engine and is key to realizing the efficiency and emissions potential of the device. To ensure that the engine's performance goals can be achieved the scavenging system was configured using computational fluid dynamics (CFD), zero- and one-dimensional modeling, and single step parametric variations. A wide range of design options was investigated including the use of loop, hybrid-loop and uniflow scavenging methods, different charge delivery options, and various operating schemes. Parameters such as the intake/exhaust port arrangement, valve lift/timing, charging pressure and piston frequency were varied.
Technical Paper

On the Development of a New Design Methodology for Vehicle Crashworthiness based on Data Mining Theory

2016-04-05
2016-01-1524
This paper represents the development of a new design methodology based on data mining theory for decision making in vehicle crashworthy components (or parts) development. The new methodology allows exploring the big crash simulation dataset to discover the underlying complicated relationships between vehicle crash responses and design variables at multi-levels, and deriving design rules based on the whole vehicle safety requirements to make decisions towards the component and sub-component level design. The method to be developed will resolve the issue of existing design approaches for vehicle crashworthiness, i.e. limited information exploring capability from big datasets, which may hamper the decision making and lead to a nonoptimal design. A preliminary design case study is presented to demonstrate the performance of the new method. This method will have direct impacts on improving vehicle safety design and can readily be applied to other complex systems.
Technical Paper

Off-shoring EMS and the Barrier of Test-in-Reliability

2008-10-07
2008-01-2712
The history of off-road equipment manufacturing has been based on proven designs and long times between model updates. In sharp contrast with this strategy is the electronic manufacturing services (EMS) industry. The EMS industry is driven by the larger consumer product industry's continuing pressure for lower costs. Because of this, EMS tools, processes, and practices have evolved to support rapid technology and component changes. However the increasing consumer demand for features like better user-interfaces, more efficient fuel consumption, and the desire for increased operational controls in equipment have forced the off-road industry to increase the frequency of product updates to meet customers' needs. Equipment manufacturers make running changes leading to a “Learning-by-doing” development and manufacturing process. But rapid changes sometimes have an unpredictable impact on the reliability of the final product.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Novel Three-Dimensional Ceramic Lattices as Catalyst Supports and Diesel Particulate Traps

2003-03-03
2003-01-0838
A novel direct-fabrication technique (robocasting) was used to produce periodic lattices of ceramic rods. The macrostructure is a three-dimensional mesh with controlled porosity in all dimensions but no line-of-sight pathways. These ceramic lattices can function as catalyst supports for gas combustion, and possibly self-regenerating filters for diesel particulates. Compared to the traditional two-dimensional “honeycomb” structured extrudates, the three-dimensional structures have high surface to volume ratios and highly turbulent flow. The flow behaviors of these ceramic lattices and the resulting enhancements in catalytic performance over traditional supports have been demonstrated for propane and methane combustion. Similar tests are underway for the selective catalytic reduction (SCR) of NOx. The potential utility of these structures for diesel particulate trapping will also be discussed.
X