Refine Your Search

Topic

Author

Search Results

Technical Paper

Wall Permeability Estimation in Automotive Particulate Filters

2023-08-28
2023-24-0110
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

Transient Air/Fuel Ratio Control of an S.I. Engine Using Neural Networks

1996-02-01
960326
Engine Electronic Control (EEC) systems on spark ignition engines enable a high degree of performance optimisation to be achieved through strategy and calibration details in software, but development times and costs can be high. The range of functions performed by EEC systems, and the level of performance demanded, are increasing and new methods of development are required. In the paper, the use of neural networks in the development and implementation of open-loop control of air/fuel ratio during engine transient operating conditions is described. The investigation has addressed the definition of suitable networks, the procedure and data required to train these, and assessment of real-time performance of the implemented system. The potential benefits of the approach include reduced calibration effort and simplification of the control strategy.
Technical Paper

Towards Self-Adaptive Fixturing Systems for Aircraft Wing Assembly

2015-09-15
2015-01-2493
The aim of this work was to develop a new assembly process in conjunction with an adaptive fixturing system to improve the assembly process capability of specific aircraft wing assembly processes. The inherently complex aerospace industry requires a step change in its capability to achieve the production ramp up required to meet the global demand. This paper evaluates the capability of adaptive fixtures to identify their suitability for implementation into aircraft wing manufacturing and assembly. To understand the potential benefits of these fixtures, an examination of the current academic practices and an evaluation of the existing industrial solutions is highlighted. The proposed adaptive assembly process was developed to account for the manufacturing induced dimensional variation that causes significant issues in aircraft wing assembly. To test the effectiveness of the adaptive assembly process, an aircraft wing assembly operation was replicated on a demonstrator test rig.
Technical Paper

The Use of Vehicle Drive Cycles to Assess Spark Plug Fouling Performance

1994-02-01
940101
Spark plug fouling is a common problem when vehicles are repeatedly operated for very short periods, particularly at low temperatures. This paper describes a test procedure which uses a series of short, high-load drive cycles to assess plug fouling under realistic conditions. The engine is force cooled between drive cycles in order to increase test throughput. Spark plug resistance is shown to be a poor indicator of the effect of fouling on engine performance and the rate of misfiring is given as an alternative measure. An automated technique to detect misfires from engine speed data is described. This has been used to investigate the effect of spark plug type, fuelling level and spark timing on fouling. Spark plugs which are designed to run hotter are found to be more resistant to plug fouling. Isolated adjustments to fuelling level and spark timing calibrations within the range providing acceptable performance have a weak effect on susceptibility to plug fouling.
Technical Paper

The Role of New Automotive Engineering Masters Programme in the Industry in China

2016-04-05
2016-01-0171
China is the world’s largest automotive producer and has the world’s biggest automobile market. However, in the past decades, the development of China’s automotive industry has depended primarily on the foreign direct investment; domestic automakers have struggled in the lower ranks of car producers. In recent years, China’s automotive industry, supported by government policies, has been improving their Research and Development (R&D) capacity, to compete with their international peers. Against this background, China’s automotive industry requires a large number of R&D professionals who have not only a higher degree but also the applied and practical knowledge and skills of research. For the purpose of meeting the industry’s needs, a new Professional Automotive Engineering Masters Programme was launched in 2009, which aims to deliver the Masters to be the R&D professionals in the future.
Journal Article

The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre

2009-11-10
2009-01-3237
This paper studies the feasibility and potential benefits of aligning recycled carbon fibres, in the form of short individual filaments, to manufacture fibre reinforced polymer composites. A review of fibre alignment processes is presented to provide insight into the different alignment technologies. The main focus is on wet hydrodynamic processes, which offer a high degree of alignment for discontinuous fibres. The process parameters that govern the alignment efficiency are also reported. The effect of alignment on fibre packing efficiency in the manufacture of composites is included, together with a report of preliminary fibre alignment results obtained from three different alignment processes.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

The Build-Up of Oil Dilution by Gasoline and the Influence of Vehicle Usage Pattern

2000-10-16
2000-01-2838
The dilution of lubricating oil by fuel has adverse effects on engine wear, oil lubricity, air/fuel ratio control and feedgas emissions. Dilution is one of the factors limiting oil change intervals. The level and rate of accumulation depend on engine operating conditions and patterns of vehicle use. The work reported here develops and evaluates an empirical model to predict accumulation characteristics. This is aligned to requirements for predictions of dilution build-up in service. Predictions are shown to be in good agreement with data given in the literature. The model is used to investigate the influence of patterns of vehicle use on dilution.
Journal Article

Technology Review of Thermal Forming Techniques for use in Composite Component Manufacture

2015-09-15
2015-01-2610
There is a growing demand for composites to be utilised in the production of large-scale components within the aerospace industry. In particular the demand to increase production rates indicates that traditional manual methods are no longer sufficient, and automated solutions must be sought. This typically leads to automated forming processes where there are a limited number of effective options. The need for forming typically arises from the inability of layup methods to produce complex geometries of structural components. This paper reviews the current state of the art in automated forming processes, their limitations and variables that affect performance in the production of large scale components. In particular the paper will focus on the application of force and heat within secondary forming processes. It will then review the effects of these variables against the structure of the required composite component and identify viability of the technology.
Journal Article

Structural Quality Inspection Based on a RGB-D Sensor: Supporting Manual-to-Automated Assembly Operations

2015-09-15
2015-01-2499
The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
Journal Article

Spectroscopic Studies of Internal Injector Deposits (IDID) Resulting from the Use of Non-Commercial Low Molecular Weight Polyisobutylenesuccinimide (PIBSI)

2014-10-13
2014-01-2720
Since 2009, there has been a rise in deposits of various types found in diesel fuel injection systems. They have been identified in the filter, the injector tip and recently inside the injector. The latter internal diesel injector deposits (IDIDs) have been the subject of a number of recent publications, and are the subject of investigations by CRC (Central Research Council Diesel Performance Group-Deposit Panel Bench/ Rig Investigation sub panel) in the US and CEN (Committee European de Normalisation TC19/WG24 Injector Deposit Task Force) and CEC (Coordinating European Council TDFG-110 engine test) in Europe. In the literature one of the internal injector deposit types, amide lacquers, has been associated with a poorly characterised noncommercial low molecular weight polyisobutylene succinimide detergent which also lacked provenance.
Technical Paper

Review of Reconfigurable Assembly Systems Technologies for Cost Effective Wing Structure Assembly

2013-09-17
2013-01-2336
Airbus commercial wings are assembled manually in dedicated steel structures. The lead time to design, manufacture and commission these fixtures is often in excess of 24 months. Due to the nature of these fixtures, manufacturing is slow in responding to changes in demand. There is underused capacity in some areas and insufficient ramp-up speed where increased production rate is needed. Reconfigurable Manufacturing Systems and Reconfigurable Assembly Systems (RAS) provide an approach to system design that provides appropriate capacity when needed. The aim of the paper is to review RAS technologies that are suitable for cost-effective wing structure assembly and what knowledge gaps exist for a RAS to be achieved. The paper examines successful cases of RAS and reviews relevant system design approaches. Cost savings are acknowledged and tabularised where demonstrated in research. The research gaps to realising a RAS for wing assembly are identified and different approaches are considered.
Journal Article

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

2015-09-15
2015-01-2594
Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
Technical Paper

Natural and Environmentally Responsive Building Envelopes

2007-07-09
2007-01-3056
In a context of global warming and our needs to reduce CO2 emissions, building envelopes will play an important role. A new imperative has been put forth to architects and engineers to develop innovative materials, components and systems, in order to make building envelopes adaptive and responsive to variable and extreme climate conditions. Envelopes serve multiple functions, from shielding the interior environment to collecting, storing and generating energy. Perhaps a more recent concern of terrestrial habitats is permeability and leakages within the building envelope. Such air tight and concealed envelopes with zero particle exchange are a necessity and already exist in regard to space capsules and habitats. This paper attempts to acknowledge existing and visionary envelope concepts and their functioning in conjunction with maintaining a favourable interior environment. It introduces several criteria and requirements of advanced façades along with interior pressurization control.
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

Measurement of Sub-23 nm Particulate Emissions from GDI Engines: A Comparison of Processing Methods

2021-04-06
2021-01-0626
Engine research has increasingly focused on emission of sub 23 nm particulates in recent years. Likewise, current legislative efforts are being made for particulate number (PN) emission limits to include this previously omitted size range. In Europe, PN measurement equipment and procedures for regulatory purposes are defined by the particle measurement programme (PMP). Latest regulation drafts for sub 23 nm measurements specify counting efficiencies with a 65% cut-off size at 10 nm (d65) and a minimum of 90% above 15 nm (d90). Even though alternative instruments, such as differential mobility spectrometers (DMS), are widely used in laboratory environments, the interpretation of their sub 23 nm measurements has not yet been widely discussed. For this study, particulate emissions of a 1.0L gasoline direct injection (GDI) engine have been measured with a DMS system for low to medium speeds with two load steps.
Technical Paper

Low Cost Reconfigurable Jig Tooling and In-Process Metrology for High Accuracy Prototype Rotorcraft Wing Assembly

2019-09-16
2019-01-1877
Reconfigurable tooling frames consisting of steel box sections and bolted friction clamps offer an opportunity to replace traditional expensive welded steel tooling. This well publicized reconfigurable reusable jig tooling has been investigated for use in the assembly of a prototype compound helicopter wing. Due to the aircraft configuration, the wing design is pinned at both ends and therefore requires a higher degree of end to end accuracy, over the 4m length, than conventional wings. During the investigation some fundamental issues are approached, including: Potential cost savings and variables which effect the business case. Achievable Jig accuracy. Potential sources of instability that may affect accuracy over time. Repeatability of measurements with various features and methods. Typical jig stability over 24hrs including effects of small temperature fluctuations. Deflections that occur due to loading.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
X