Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Some Experiences with Expert Systems for the Design, Monitoring and Maintenance of Hydraulic Circuits

1990-09-01
901641
In much heavy industrial equipment, power transfer is primarily provided by a hydraulic system. Reliable operation of a hydraulic circuit can only be ensured through proper design, effective maintenance and continuous monitoring. Each of these areas requires the expertise of well-trained and experienced individuals. Unfortunately such individuals are not always available. However, the recently introduced technology of “expert” or “knowledge-based” systems can make these individuals' expertise available in the form of a computer program. As part of a long term project in the application of expert systems to hydraulic circuit design, a prototype program has been developed which can successfully configure a variety of circuits including multiple load and add-on circuits. This is currently being expanded to include sequenced circuits, steady-state circuit analysis, which would include component sizing, and dynamic analysis.
Technical Paper

Some Applications of Neural Network Technology to Fluid Power Systems

1997-09-08
972768
In many areas, neural network technology has made a successful transition from theory to practical application, primarily due to the advances that have been made in computer technology and digital signal processing. Research at the University of Saskatchewan over the past few years has focused on applying neural network technology to fluid power systems. This paper will examine four projects that have been initiated by the authors and their graduate students which use neural networks for purposes of open loop pattern following, multiple input - multiple output control, indirect measurement of actuator displacement, and hydraulic component identification. A brief introduction to static and dynamic neural networks is given. Descriptions of the individual project objectives, the experimental implementation of neural networks to achieve these objectives, and some typical experimental results are considered.
Technical Paper

Seedling Emergence Simulation Using Mechanical Probes

1992-09-01
921618
Understanding the Relationships between plants and soil is important in the development of methods of crop production. Although physical properties of soil conducive to plant growth can be recognized by experienced observers, many of these properties have not been defined satisfactorily in mathematical or physical terms. A method of measuring penetration resistance and energy exerted by a mechanical seedling (a steel probe simulating a seedling) as it moved upward through the soil surface under different levels of surface compaction and soil moisture was examined. Mechanical seedlings with 2.06, 3.19 and 4.65 mm tip diameters were tested at soil moisture levels of 13, 17, and 20%. The penetration rate of the mechanical seedling while moving through the soil was held constant at 10 mm/min. Results showed that the emergence energy increased directly with soil surface compaction pressure, initial soil moisture content, and mechanical seedling diameters.
Technical Paper

On-Line Process Parameter Identification for Control of Variable Rate Nitrogen Fertilization

1993-09-01
932424
Variable rate nitrogen fertilization (VRNF) is a technique being developed for agricultural applications in recent years. In designing a controller for VRNF system, it is hoped that the process parameters, which are difficult to measure, could be identified on-line so that the model-based digital controllers or adaptive controllers could be used to achieve better system performance. In this paper, the problems associated with the on-line process parameter identification for the control of variable rate nitrogen fertilization are analyzed. Simulation studies and experimental tests were conducted to determine a suitable parameter estimation algorithm and the influence of pseudo random binary signal and external torque disturbance on the parameter identification accuracy. The results from the simulation and experimental studies revealed that the recursive least square algorithm is most suitable for parameter estimation.
Technical Paper

Model Identification and Analysis of a High Performance Hydrostatic Actuation System

2000-09-11
2000-01-2619
A hydrostatic actuation system referred to as the Electro Hydraulic Actuator (EHA) has been designed and prototyped. In this paper, a mathematical model of the EHA is reviewed and analyzed. This theoretical analysis is supported by open-loop experimental results that indicate the presence of nonlinearities but at a degree that is considerably less than that of conventional hydraulic systems with servo-valves. The behavior of the system can be approximated as piece-wise linear with the damping ratio and natural frequency changing according to a piece-wise operating region. The EHA model is used in conjunction with experimentation and numerical optimization for quantifying the influence of unknown parameters in this system. A parametric model for the EHA is subsequently proposed and validated.
Technical Paper

Development of a Durability Tester for Pelleted and Cubed Animal Feed

1999-09-14
1999-01-2830
Pelleted animal feeds are processed from ground and mixed feedstocks. The ingredients are pressed through an array of dies at pressures exceeding 35 MPa. Cubing is a related process, producing larger, more fibrous blocks from chopped materials. The end product is a hardened agglomerated mass that needs to be capable of withstanding subsequent handling operations. The measurement of the durability of the product is very important to the processors and feed handlers. The existing ASAE durability tester (S267) is not adequately sensitive to compare the hardness of pellets and cubes. A new tester, with a working principle based on impact and shear, has been developed and refined for usability. The unit can accommodate pelleted and cubed material varying in size and hardness. The paper discusses the development history of the unit and presents some experimental data from its application.
Journal Article

Development of Rubber and Agricultural Fiber based Biocomposite for Industrial Application

2008-10-07
2008-01-2626
Flax, which is known for its linens and oils that are used for industrial products, can also be utilized as a cost effective and environmentally acceptable approach to the creation of a partially biodegradable biocomposite. Biocomposite material is investigated by combining recycled tire rubber, flax and linear low density polyethylene (LLDPE). The manufacturing process which be used to fabricate the biocomposite product included Extrusion and Compression Molding. Optimizing and studying the composition percentages of the compounds were studied in this paper. Moreover, the properties of the product were observed by using tensile test, tearing test, water absorption test, hardness test and Differential Scanning Calorimetry.
Technical Paper

Comparison of Hydrostatic and Servovalve Controlled Hydraulic Actutation Systems in Robotics

2000-09-11
2000-01-2593
This paper compares the characteristics of a high-precision hydrostatic actuator to that of conventional hydraulic systems using servovalves. Servovalve controlled hydraulic actuators retain their market share as they provide precision movement and offer a very high torque to mass ratio at the final actuation point. The input current/output torque relationship of a conventional hydraulic actuation system is reviewed in a robotic context. This relationship is summarized by a mathematical model that can be expressed in a generalized form. This model is used for the analysis of flow and dynamic characteristics. The design and modeling of a recently proposed high-performance hydrostatic actuation system referred to as the ElectroHydraulic Actuator (EHA) is briefly reviewed. A prototype of this actuator has been produced and has demonstrated a comparable performance to servovalve controlled conventional hydraulic systems.
Journal Article

Characteristics of Hybrid Fibre-Composites Boards for Potential Structural Application

2008-10-07
2008-01-2724
This work is based on comparative study of oilseed flax fibre and glass fibre reinforced composite boards for potential application in automotive industries. The material characterizations of flax and glass fibre-composites using unsaturated polyester as matrix were evaluated. Vacuum infusion was used for fabrication of composites. Flexural, tensile, water absorption and color tests were conducted on the composite boards. The density and the moisture content of flax/glass fibre mats were also measured. Three types of composite boards, including flax, glass and flax-glass sandwich were developed and characterized.
Technical Paper

An Integrated Flow Divider/Combiner Valve Design, Part 2

1993-09-01
932401
The development of high precision flow divider/combiner valves has received considerable attention by the authors over the past decade. Several different valve designs for division and combination of flow have been designed which display small flow dividing/combining error (1-2%) when compared to conventional designs (2-10%). Recent studies have improved upon the design in order to reduce cost, weight and complexity of the valve. This paper will present the latest of the authors research into the development of a high precision, autoregulated flow divider/combiner valve with an integral shuttle valve. The autoregulator extends the operating range of the integrated flow divider/combiner valve (for errors less than 2 %) to 10-50 lpm compared to 30-50 lpm for the unregulated valve.
Technical Paper

A Process for Modeling and Analysis of Prototyped Products and its Application to a Variable Fan Drive

2002-03-04
2002-01-0763
It is not uncommon for complex engineering products to undergo several design iterations due to changing market expectations or inadequate performance. In such circumstances, a prototype is generally available that could be used for performance analysis before a revision to the design is made. The availability of a prototype can be an invaluable tool for the analysis of the impact of potential design changes on the system performance. In this paper, a process is proposed for the derivation of a physical model that could be used for design analysis. The process uses model identification for determination of model complexity and numerical optimization for estimation of model parameters. This process is applied to a new pneumatic fan clutch system that has been developed to improve the efficiency of engine temperature regulation in heavy-duty commercial vehicles. This system is currently in a prototype phase and its detailed physical model is required for design trade-off analysis
Technical Paper

A New Technique for Improved Performance of the Pulse Width Modulation Control of Hydraulic Systems

1995-09-01
952105
Pulse width modulation (PWM) has been used to alter the performance of on-off hydraulic control valves to make them perform as proportional type flow control valves. Nonlinear performance resulting from time delays in valve switching as well as valve wear due to continuous cycling continue to persist as operational problems. This paper examines a new technique called modified PWM control. The method was found to provide accurate control with a minimum of valve chatter.
Technical Paper

A Neural Network and Electrohydraulic Based Variable Rate Fertilizer Application System

1998-09-14
981967
Most fertilizer application systems are not capable of variable rate adjustments “on-the-fly”. To change the application rate, the farmer must dismount the tractor and change the gear ratio mechanically (i.e. via gears, chains, etc.). Air seeder manufacturers have come up with their own unique solutions to address this problem, usually involving electrohydraulics. At present there are older seeding units that perform adequately, but do not have the variable rate option. A retrofit is therefore very desirable for these units. In this paper, the feasibility of a simple hydraulic proportional valve and variable speed motor circuit is employed to replace the gears and chains. The unit is integrated with a microcontroller to provide compensation to the nonlinear properties of a proportional valve, and in turn provide a very accurate feedrate. In addition, direct user input from the cab of the tractor is possible, allowing on-the-go rate changes.
Technical Paper

A Mechatronics Approach for the Design of a New High Performance ElectroHydraulic Actuator

1999-09-14
1999-01-2853
This paper describes the design strategy adopted for developing a new high performance actuation system referred to as the ElectroHydraulic Actuator (EHA). The design approach can be divided into fives phases that include: pre-conceptual analysis, conceptual design, preliminary design, detailed design and, integration and test. An important aspect of the design process is the use of modeling and simulation for the analysis, sizing and selection of off-the-shelf parts, and for the detailed design of new custom made components. EHA is based on hydrostatic transmission. It is a unique device with its own characteristics and requires hydraulic components that are specifically tailored to its needs. A prototype of EHA has been produced and has demonstrated an extremely high level of performance. The performance of this prototype complies with design requirements and validates the chosen design approach.
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
Technical Paper

A Framework for Modeling and Analysis of Human Repetitive Operations in a Production/assembly Line

2007-06-12
2007-01-2500
Repetitive movements have been found to affect assembly operations in many ways such as increasing the risk of injuries, increasing the cost of production, and reduction in the quality of products. This has been a big problem for industries. The method adopted by these studies seems to pose more injuries to workers as workers need to perform a task to the extreme level of pain to determine if repetitive injuries will occur or not. The method of modeling and simulation of human operations is a valid technique that is effective, but could be complex. Some of the modeling and simulation software packages make use of such guidelines as NIOSH, Snook and Ciriello, RULA, REBA, and Biomechanics single action analysis. However, various applications of these tools in actual ergonomic studies tend to be very time consuming and trivial due to the lack of a valid framework to guide the process.
X