Refine Your Search

Topic

Search Results

Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Pressure Ratios, Pressure and Temperature Levels

2019-01-15
2019-01-0041
Engine valve flow coefficients are not only used to characterize the performance of valve/port designs, but also for modelling gas exchange in 0D/1D engine simulation. Flow coefficients are usually estimated with small pressure ratios and at ambient air conditions. In contrast, the ranges for pressure ratio, pressure and temperature level during engine operation are much more extensive. In this work the influences of these three parameters on SI engine poppet valve flow coefficients are investigated using 3D CFD and measurements for validation. While former investigations already showed some pressure ratio dependencies by measurement, here the use of 3D CFD allows a more comprehensive analysis and a deeper understanding of the relevant effects. At first, typical ranges for the three mentioned parameters during engine operation are presented.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Piston Influence and Flow Pulsation

2019-09-09
2019-24-0003
Engine valve flow coefficients are used to describe the flow throughput performance of engine valve/port designs, and to model gas exchange in 0D/1D engine simulation. Valve flow coefficients are normally determined at a stationary flow test bench, separately for intake and exhaust side, in the absence of the piston. However, engine operation differs from this setup; i. a. the piston might interact with valve flow around scavenging top dead center, and instead of steady boundary conditions, valve flow is nearly always subjected to pressure pulsations, due to pressure wave reflections within the gas exchange ports. In this work the influences of piston position and flow pulsation on valve flow coefficients are investigated for different SI engine geometries by means of 3D CFD and measurements at an enhanced flow test bench.
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

Three-Dimensional Simulation of the Piston Group

2000-03-06
2000-01-1239
For basic research on the piston group a new simulation technique is developed using the contact algorithm of a commercial FE-code (MARC). Several improvements were made in order to adapt the MARC solver to the problem of sliding and dynamic contact. The first computations, a real transient analysis simulating the piston group, of both a two-stroke engine and a modern direct injected four-stroke Diesel engine for passenger cars, show that the new method is able to calculate the movements, velocities and accelerations of the piston. The quality of the results is mainly influenced by the hydrodynamic effects.
Technical Paper

The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet

1996-05-01
961200
Quantitative Laser-Induced Incandescence (LII) has been applied to investigate the soot formation in a combusting Diesel jet for various conditions. For the quantification of the LII signal the local soot volume fraction of a diffusion flame burner was measured using laser beam extinction. These data were used for the calibration of the LII signal. The investigation of the soot formation in a combusting Diesel jet was performed in a high pressure, high temperature combustion chamber with optical access. A wide range of pressure (up to 10 MPa) and temperature (up to 1,500 K) conditions could be covered using a hydrogen precombustion, which is initiated inside the chamber before fuel injection. The influence of different gas atmospheres have been investigated by varying the gas composition (H2, O2 and N2) inside the chamber.
Technical Paper

The Potential of Data-Driven Engineering Models: An Analysis Across Domains in the Automotive Development Process

2023-04-11
2023-01-0087
Modern automotive development evolves beyond artificial intelligence for highly automated driving, and toward an interconnected manifold of data-driven development processes. Widely used analytical system modelling struggles with rising system complexity, invoking approaches through data-driven system models. We consider these as key enablers for further improvements in accuracy and development efficiency. However, literature and industry have yet to thoroughly discuss the relevance and methods along the vehicle development cycle. We emphasize the importance of data-driven system models in their distinct types and applications along the developing process, from pre-development to fleet operation. Data-driven models have proven in other works to be fast approximators, of high accuracy and adaptive, in contrast to physics-based analytical approaches across domains.
Technical Paper

The Isochoric Engine

2020-04-14
2020-01-0796
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Simulation Program for Design of the Cooling Air Duct of Motor Cars for Optimizing the Cooling System

1994-03-01
940603
A numerical simulation program for the design of the cooling air duct and the cooling system of vehicles for stationary operating conditions is introduced. This program allows the simulation of interactions with the system environment resp. an air conditioning. Hot recirculations of air in the front part of the car and the inhomogenious flow through the heat exchangers radiator and condensor in their affects on the heat transfer capacity are simulated. The power demand of the fan, the water pump and the compressor is taken into account for calculating the heat flow from the engine into the cooling water.
Technical Paper

Quantitative Time Resolved 2-D Fuel-Air Ratio Measurements in a Hydrogen Direct Injection SI Engine Using Spontaneous Raman Scattering

1996-05-01
961101
A two-dimensional technique for the quantitative determination of the fuel-air ratio in hydrogen fuelled engines has been developed. The technique is based on the spontaneous Raman scattering of the hydrogen molecules (Stokes Q-branch) and the simultaneous measurement of the pressure inside the combustion chamber. From these data the local partial pressure of the hydrogen and, therefore, the fuel-air ratio can be calculated. This method was applied in a single cylinder direct injection research engine in order to prove the applicability of this technique under real engine conditions. The measurements inside the side chamber of the engine show a fast mixing process of the compressed air and the injected hydrogen (6 MPa injection pressure) independent of the injection timing.
Technical Paper

Quantitative 2D LIF Measurements of Air/Fuel Ratios During the Intake Stroke in a Transparent SI Engine

1992-10-01
922320
The fluorescence characteristics of different carbonyl compounds were investigated in a pressurized bomb using an excimer laser (308 nm) for excitation. The partial pressure of the carbonyl compounds and air was varied between 0 - saturation pressure and 0 - 5 bar, respectively. The fluorescence signal of different ketones increased almost linearly with vapour pressure. It was found to be almost independent of air pressure indicating only a weak quenching influence of oxygen. Ethylmethylketone (EMK) has a boiling temperature and vapour pressure similar to gasoline. Therefore, the applicability of EMK for measuring 2-D fuel distributions in a combustion chamber was tested in a transparent SI square piston engine. EMK was injected into the intake manifold by a conventional injector for studying the fuel/air mixing during the intake and compression stroke at 1.000 rpm. From the 2-D fluorescence signals 2-D air/fuel ratios were calculated using calibration data from bomb experiments.
Technical Paper

Presenting a Fourier-Based Air Path Model for Real-Time Capable Engine Simulation Enhanced by a Semi-Physical NO-Emission Model with a High Degree of Predictability

2016-10-17
2016-01-2231
Longitudinal models are used to evaluate different vehicle-engine concepts with respect to driving behavior and emissions. The engine is generally map-based. An explicit calculation of both fluid dynamics inside the engine air path and cylinder combustion is not considered due to long computing times. Particularly for dynamic certification cycles (WLTC, US06 etc.), dynamic engine effects severely influence the quality of results. Hence, an evaluation of transient engine behavior with map-based engine models is restricted to a certain extent. The coupling of detailed 1D-engine models is an alternative, which rapidly increases the model computation time to approximately 300 times higher than that of real time. In many technical areas, the Fourier transformation (FT) method is applied, which makes it possible to represent superimposed oscillations by their sinusoidal harmonic oscillations of different orders.
Technical Paper

Predicting the Influence of Charge Air Temperature Reduction on Engine Efficiency, CCV and NOx-Emissions of a Large Gas Engine Using a SI Burn Rate Model

2020-04-14
2020-01-0575
In order to meet increasingly stringent exhaust emission regulations, new engine concepts need to be developed. Lean combustion systems for stationary running large gas engines can reduce raw NOx-emissions to a very low level and enable the compliance with the exhaust emission standards without using a cost-intensive SCR-aftertreatment system. Experimental investigations in the past have already confirmed that a strong reduction of the charge air temperature even below ambient conditions by using an absorption chiller can significantly reduce NOx emissions. However, test bench operation of large gas engines is costly and time-consuming. To increase the efficiency of the engine development process, the possibility to use 0D/1D engine simulation prior to test bench studies of new concepts is investigated using the example of low temperature charge air cooling. In this context, a reliable prediction of engine efficiency and NOx-emissions is important.
Technical Paper

Numerical Investigation on the Cause-and-Effect Chain for Cycle-to-Cycle Variation of Direct-Injection Spark-Ignition Engine

2023-08-28
2023-24-0035
Due to increasingly strict emission regulations, lean combustion concept has become an essential direction of internal combustion engine development to reduce engine emissions. However, lean combustion will lead high combustion instability and unpredictive engine emissions. The combustion instability is represented as the high cycle-to-cycle variation. Therefore, understanding the mechanism of cycle-to-cycle variation is crucial for the internal combustion engine design. This paper investigates the cause-and-effect chain of cycle-to-cycle variation of spark ignition engines using 3D CFD simulations with CONVERGE v3.0. The cyclic variations were simulated through Large Eddy Simulations, and the simulations based on Reynolds-averaged Navier–Stokes were used as supplements. The analysis focuses on two key factors that determine the combustion process: the turbulent intensity and the homogeneity of the air/fuel mixture.
Technical Paper

Life Cycle Inventories - New Experiences to Save Environmental Loads and Costs

1997-04-08
971171
The Institute for Polymer Testing and Polymer Science (IKP) is an independent institute of the University of Stuttgart. For approximately 8 years work is done on the field of Life Cycle Engineering. The first couple of years knowledge about the production of materials was collected within plenty industrial cooperation. Parallel to this a methodology for the Life Cycle Engineering approach and a software system (GaBi 1.0-2.0) were developed. Based on these information, projects for balancing single parts like bumpers, fender, air intake manifolds and oil filters followed by projects handling more complex parts or processes like several body in white, headlights, fuel tanks, green tire or coating processes were done to establish the methodology of Life Cycle Engineering as a tool for decision makers and weak point analysis. Parallel to this a methodology for an Life Cycle Inventory (LCI) for the system automobile was developed in cooperation with the Volkswagen AG in 1993.
Technical Paper

Life Cycle Analysis of Cars - Experiences and Results

1995-10-01
951836
An important cornerstone of our society is the individual mobility which, today, chiefly can only be offered by the automobile. However, in the industrial countries the car at the same time is exposed to harsh criticism as far as environmental pollution is discussed. Goal of this presentation is to show a scientific method by means of which environmental loads during manufacture, use and utilization/disposal of whole systems - in this special case vehicles - can be quantified and optimized. In order to do this, the instrument of life cycle analysis of parts and processes is used and in the same way the scientific method is developed beyond the level of literature. Due to these modifications the results are only useful if the boundary conditions are mentioned in detail. Considerations on the system such as the examination of an automobile require a method extended by essential criteria due to its complexity.
Technical Paper

Improvement of Post-Oxidation for Low-Emission Engines through 3D-CFD Virtual Development

2023-08-28
2023-24-0107
There is a growing need for low-emissions concepts due to stricter emission regulations, more stringent homologation cycles, and the possibility of a ban on new engines by 2035. Of particular concern are the conditions during a cold start, when the Three-Way Catalyst is not yet heated to its light-off temperature. During this period, the catalyst remains inactive, thereby failing to convert pollutants. Reducing the time needed to reach this temperature is crucial to comply with the more stringent emissions standards. The post oxidation by means of secondary air injection, illustrated in this work, is a possible solution to reduce the time needed to reach the above-mentioned temperature. The strategy consists of injecting air into the exhaust manifold via secondary air injectors to oxidize unburned fuel that comes from a rich combustion within the cylinder.
Technical Paper

Friction Reduction by Optimization of Local Oil Temperatures

2019-09-09
2019-24-0177
The reduction of engine-out emissions and increase of the total efficiency is a fundamental approach to reduce the fuel consumption and thus emissions of vehicles driven by combustion engines. Conventional passenger cars are operated mainly in lower part loads for most of their lifetime. Under these conditions, oil temperatures are far below the maximum temperature allowed and dominate inside the journal bearings. Therefore, the objective of this research was to investigate possible potentials of friction reduction by optimizing the combustion engine’s thermal management of the oil circuit. Within the engine investigations, it was shown that especially the friction of the main and connecting rod bearings could be reduced with an increase of the oil supply temperature. Furthermore, on a journal bearing test rig, it was shown that no excessive wear of the bearings is to be expected in case of load increase and simultaneous supply of cooler oil.
X