Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Multifunctional Fiber Batteries for Next Generation Space Suits

2008-06-29
2008-01-1996
As next generation space suit concepts enable extravehicular activity (EVA) mission capability to extend beyond anything currently available today, revolutionary advances in life support technologies are required to achieve anticipated NASA mission profiles than may measure years in duration and require hundreds of sorties. Since most life support systems require power, increased mass and volume efficiency of the energy storage materials can have a dramatic impact on reducing the overall weight of next generation space suits. ITN Energy Systems, in collaboration with Hamilton Sundstrand and the NASA Johnson Space Center's EVA System's Team, is developing multifunctional fiber batteries to address these challenges. By depositing the battery on existing space suit materials, e.g. scrim fibers in the thermal micrometeoroid garment (TMG) layers, parasitic mass (inactive materials) is eliminated leading to effective energy densities ∼400 Wh/kg.
Technical Paper

Multifunctional Fiber Batteries for Next Generation Space Suits

2007-07-09
2007-01-3173
As next generation space suit concepts enable extravehicular activity (EVA) mission capability to extend beyond anything currently available today, revolutionary advances in life support technologies are required to achieve anticipated NASA mission profiles that may measure years in duration and require hundreds of sorties. Since most life support systems require power, increased mass and volume efficiency of the energy storage materials can have a dramatic impact on reducing the overall weight of next generation space suits. This paper details the development of a multifunctional fiber battery to address these needs.
Technical Paper

Investigation of Cost-effective SiC Based Hybrid Switch and Improved Inductor Design Procedure for Boost Converter in Electrical Vehicles Application

2015-04-14
2015-01-1202
A cost-effective SiC based hybrid switch and an improved inductor design procedure for boost converter in electric vehicles (EVs) and hybrid electric vehicles (HEVs) are presented in this paper. The feasibility of a hybrid switch using low power SiC MOSFET and high power Si IGBT is investigated to provide a cost-effective and failure-resistant method to employ the fast switching characteristics of SiC devices. The operation of the hybrid switch is tested in double pulse test experiment and compared with the single IGBT. Additionally, the boost inductor design is discussed, which allows the optimization of weight and power loss across different core materials. An improved powder core inductor design procedure is presented to avoid the iterative design procedure provided by the manufacture. Both the powder material and nanocrystalline material are considered in the inductor design procedure.
Technical Paper

IVA/EVA Life Support Umbilical System

2007-07-09
2007-01-3228
For NASA's Constellation Program, an Intravehicular Activity (IVA) and Extravehicular Activity (EVA) Life Support Umbilical System (LSUS) will be required to provide environmental protection to the suited crew during Crew Exploration Vehicle (CEV) cabin contamination or depressurization and contingency EVAs. The LSUS will provide the crewmember with ventilation, cooling, power, communication, and data, and will also serve as a crew safety restraint during contingency EVAs. The LSUS will interface with the Vehicle Interface Assembly (VIA) in the CEV and the Suit Connector on the suit. This paper describes the effort performed to develop concept designs for IVA and EVA umbilicals, universal multiple connectors, handling aids and stowage systems, and VIAs that meet NASA's mission needs while adhering to the important guiding principles of simplicity, reliability, and operability.
Technical Paper

Advanced Vehicle Powertrain Design, Validation, and Integration for the EcoCAR 2 Advanced Vehicle Technology Competition

2014-04-01
2014-01-1926
For the EcoCAR 2 collegiate engineering competition, The University of Tennessee is modifying a 2013 Chevrolet Malibu Eco from a mild hybrid into a series-parallel plug-in hybrid electric vehicle. For this design, the team is exchanging the engine for one that is E85 compatible, slightly separating the engine and transmission, and coupling an electric generator to the engine. In the rear of the vehicle, a modified all-wheel drive subframe will be implemented. This subframe will house a traction motor and a single gear electric drive transmission. A custom fuel tank and fuel system will be constructed for the vehicle, in order to use E85 fuel. Furthermore, an energy storage system will be placed in the rear of the vehicle, in the trunk and spare tire space. Modifications for the packaging must be made and analysis must be performed to validate the structural integrity of all modifications.
Technical Paper

A Study to Explore Locomotion Patterns in Partial Gravity Environments

1992-07-01
921157
The primary objectives of this study were to determine the factors that affect stability during locomotion in both lunar and martian gravity environments and to determine the criteria needed to enhance stability and traction. This study tested the effects of changing the speed of locomotion and the pattern of locomotion under three gravity conditions. The results showed that as the gravity level decreased, the amount of vertical and horizontal forces dropped significantly. The results also showed that there are some similarities across gravity levels with regard to changing the speed as well as the pattern of locomotion. In general, an increase in the speed resulted in an increase in the vertical and the horizontal forces. A change in the pattern of locomotion showed that even at reduced gravity, it will be more difficult to stop than compared to continue or start the motion.
X