Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Monitoring of Ring Face, Ring Side and Liner Wear in a Mack T-10 Test, using Surface Layer Activation

2007-10-29
2007-01-4002
The API has established lubricant specifications, which include standard tests for ring and liner wear. The Mack T-10 is one such test, performed on a prototype engine with Exhaust Gas Recirculation (EGR). At EOT, the liner wear is measured by profilometry, while the ring wear is measured by weight loss. It was decided to monitor the wear of the rings and liners during a full-length T10 test in order to observe the evolution of the wears and wear rates over the course of the test, by using the Surface Layer Activation (SLA) and Bulk Activation (BA) techniques. Three different radioisotopes were created, one in the liners at the turnaround zone, one in the chromium-containing coating on the ring faces, and one in the iron bulk of the rings. This enabled us to observe the wear characteristics of these three components separately. In particular, we were able to separate the face and side ring wears, which cannot be done with simple weight-loss measurements.
Technical Paper

Effects of Catalyst Formulation on Vehicle Emissions With Respect to Gasoline Fuel Sulfur Level

1999-10-25
1999-01-3675
Proposed emissions standards will require that emissions control systems function at extremely high efficiency. Recently, studies have shown that elevated gasoline fuel sulfur levels (GFSL) can impair catalytic converter efficiency. In this study, a variety of tri-metal catalysts were evaluated to determine if formulation changes could reduce emissions sensitivity to GFSL. Catalysts with elemental composition similar to an OEM, but with double the precious metal (PM) loading, were evaluated using 38 and 620 ppm GFSL. Doubling the PM loading significantly reduced catalyst sensitivity to sulfur. Doubling the rhodium loading, at the expense of the platinum loading, significantly improved NOx emission sulfur sensitivity.
Technical Paper

Deposit Reduction in SCR Aftertreatment Systems by Addition of Ti-Based Coordination Complex to UWS

2019-04-02
2019-01-0313
Formation of urea-derived deposits in selective catalytic reduction (SCR) aftertreatment systems continues to be problematic at temperatures at and below 215 °C. Several consequences of deposit formation include: NOx and NH3 slip, exhaust flow maldistribution, increased engine backpressure, and corrosion of aftertreatment components. Numerous methods have been developed to reduce deposit formation, but to date, there has been no solution for continuous low-temperature dosing of Urea-Water Solution (UWS). This manuscript presents a novel methodology for reducing low-temperature deposit formation in SCR aftertreatment systems. The methodology described herein involves incorporation and dissolution of an HNCO hydrolysis catalyst directly into the UWS. HNCO is a transient species formed by the thermolysis of urea upon injection of UWS into the aftertreatment system.
X