Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Trajectory Prediction in Highway Merging Area Using Interactive Graph Attention Mechanism

2023-12-31
2023-01-7110
Accurately predicting the future trajectories of surrounding traffic agents is important for ensuring the safety of autonomous vehicles. To address the scenario of frequent interactions among traffic agents in the highway merging area, this paper proposes a trajectory prediction method based on interactive graph attention mechanism. Our approach integrates an interactive graph model to capture the complex interactions among traffic agents as well as the interactions between these agents and the contextual map of the highway merging area. By leveraging this interactive graph model, we establish an agent-agent interactive graph and an agent-map interactive graph. Moreover, we employ Graph Attention Network (GAT) to extract spatial interactions among trajectories, enhancing our predictions. To capture temporal dependencies within trajectories, we employ a Transformer-based multi-head self-attention mechanism.
Technical Paper

Tribological Factors Affecting the LDH Test

1992-02-01
920434
The present work is aimed at investigating the tribological factors influencing the LDH test. The material used was AKDQ cold-rolled bare steel, 0.82mm thick. The investigated factors included: test speed (0.833, 4.167, 6.667, and 8.333 mm/s), lubricant viscosity (4.5, 7.0, and 12.5 mm2/s), punch roughness (0.033 and 0.144 μm Ra), and test temperature (25 and 50 °C). Test speed and lubricant viscosity form a variation of the numerator of the Stribeck curve's x-axis (ηV). With ηV increasing from 4 to 120 mm3/s2 friction decreased, resulting in a 0.5 mm higher LDH. Increasing the punch roughness decreased friction producing an increase of 0.25 mm in the LDH. There appears to be an optimum roughness -- at which the roughness features act as lubricant reservoirs but the asperities do not break through the lubricant film -- resulting in minimum friction, therefore, maximum LDH.
Technical Paper

Transient Tribological Phenomena in Drawbead Simulation

1992-02-01
920634
Details of the development of metal transfer and friction were studied by drawing cold-rolled bare, galvannealed, electrogalvanized, and hot-dip galvanized strips with a mineral-oil lubricant of 30 cSt viscosity at 40 C, over a total distance of 2500 mm by three methods. An initial high friction peak was associated with metal transfer to the beads and was largest with pure zinc and smallest with Fe-Zn coatings. Insertion of a new strip disturbed the coating and led to the development of secondary peaks. Long-term trends were governed by the stability of the coating. Stearic acid added to mineral oil delayed stabilization of the coating and increased contact area and thus friction with pure zinc surfaces. The usual practice of reporting average friction values can hide valuable information on lubrication mechanisms and metal transfer.
Journal Article

The Missing Link: Developing a Safety Case for Perception Components in Automated Driving

2022-03-29
2022-01-0818
Safety assurance is a central concern for the development and societal acceptance of automated driving (AD) systems. Perception is a key aspect of AD that relies heavily on Machine Learning (ML). Despite the known challenges with the safety assurance of ML-based components, proposals have recently emerged for unit-level safety cases addressing these components. Unfortunately, AD safety cases express safety requirements at the system level and these efforts are missing the critical linking argument needed to integrate safety requirements at the system level with component performance requirements at the unit level. In this paper, we propose the Integration Safety Case for Perception (ISCaP), a generic template for such a linking safety argument specifically tailored for perception components. The template takes a deductive and formal approach to define strong traceability between levels.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

2017-03-28
2017-01-0043
Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Journal Article

Parametric Importance Analysis and Design Optimization of a Torque Converter Model Using Sensitivity Information

2012-04-16
2012-01-0808
Torque converters are used as coupling devices in automobile powertrains involving automatic transmissions. Efficient modeling of torque converters capturing various modes of operation is important for powertrain design and simulation, (Hroval and Tobler 1, Ishihara and Emori 2) optimization and control applications. Models of torque converters are available in various commercial simulation packages, Hadi et. al. 3. The information about the effect of model parameters on torque converter performance is valuable for any design operation. In this paper, a symbolic sensitivity analysis of a torque converter model will be presented. Direct differentiation (Serban and Freeman 4) is used to generate the sensitivity equations which results in equations in symbolic form. By solving the sensitivity equations, the effect of a perturbation of the model parameters on the behavior of the system is determined.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
Journal Article

Optimal Cooperative Path Planning Considering Driving Intention for Shared Control

2020-04-14
2020-01-0111
This paper presents an optimal cooperative path planning method considering driver’s driving intention for shared control to address target path conflicts during the driver-automation interaction by using the convex optimization technique based on the natural cubic spline. The optimal path criteria (e.g. the optimal curvature, the optimal heading angle) are formulated as quadratic forms using the natural cubic spline, and the initial cooperative path profiles of the cooperative path in the Frenet-based coordinate system are induced by considering the driver’s lane-changing intention recognized by the Support Vector Machine (SVM) method. Then, the optimal cooperative path could be obtained by the convex optimization techniques. The noncooperative game theory is adopted to model the driver-automation interaction in this shared control framework, where the Nash equilibrium solution is derived by the model predictive control (MPC) approach.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Technical Paper

Intelligent Voice Activated Drone(s) for in-Vehicle Services and Real-Time Predictions

2021-04-06
2021-01-0063
Today, commercially available drones have limited use-cases in the rapidly evolving community. However, with advances in drone and software technology, it is possible to utilize these aerial machines to solve problems in a variety of industries such as mining, medical, construction, and law enforcement. For example, in order to reduce time of investigation, Indiana State Police are currently utilizing ad-hoc commercial drones to reconstruct crash scenes for insurance and legal purposes. In this paper, we illustrate how to effectively integrate drones for in-vehicle services and real-time prediction for automotive applications. In order to accomplish this, we first integrate simpler controls such as voice-commands to control the drone from the vehicle. Next, we build smart prediction software that monitors vehicle behavior and reacts in real-time to collisions.
Technical Paper

Identification of the Plane Strain Yield Strength of Anisotropic Sheet Metals Using Inverse Analysis of Notch Tests

2022-03-29
2022-01-0241
Plane strain tension is the critical stress state for sheet metal forming because it represents the extremum of the yield function and minima of the forming limit curve and fracture locus. Despite its important role, the stress response in plane strain deformation is routinely overlooked in the calibration of anisotropic plasticity models due to challenges and uncertainty in its characterization. Plane strain tension test specimens used for constitutive characterization typically employ large gage width-to-thickness ratios to promote a homogeneous plane strain stress state. Unfortunately, the specimens are limited to small strain levels due to fracture initiating at the edges in uniaxial tension. In contrast, notched plane strain tension coupons designed for fracture characterization have become common in the automotive industry to calibrate stress-state dependent fracture models. These coupons have significant stress and strain gradients across the gage width to avoid edge fracture.
Technical Paper

Hydrocarbon Poisoning of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1096
The effects of propylene (C₃H₆) and dodecane (n-C₁₂H₂₆) exposure on the NH₃-based selective catalytic reduction (SCR) performance of two Cu-exchanged zeolite catalysts were investigated. The first sample was a model Cu/beta zeolite sample and the second a state-of-the-art Cu/zeolite sample, with the zeolite material characterized by relatively small pores. Overall, the state-of-the-art sample performed better than the model sample, in terms of hydrocarbon inhibition (which was reduced) and N₂O formation (less formed). The state-of-the-art sample was completely unaffected by dodecane at temperatures lower than 300°C, and only slightly inhibited (less than 5% conversion loss), for standard SCR, by C₃H₆. There was no evidence of coke formation on this catalyst with C₃H₆ exposure. The model sample was more significantly affected by hydrocarbon exposure. With C₃H₆, inhibition is associated with its partial oxidation intermediates adsorbed on the catalyst surface.
Technical Paper

Fatigue Testing of Sheet Metals Subject to Uniaxial Tension-Compression

2001-03-05
2001-01-1321
The paper describes the fabrication and testing of thin sheet metal uniaxial fatigue specimens that have been laminated to prevent buckling. When hot or cold rolled metal thicknesses are below 5 mm, the usual fatigue specimens, having a uniform gauge length of 7.5 mm or more, buckle in the short life region (∼10000 cycles) of strain-life testing. For thinner materials, non-standard specimen designs or anti-buckling guides have been used, but each of these solutions requires additional instrumentation. The results presented in this paper show that laminating multiple sheets of material together to increase the specimen's effective thickness raises the strain level for the onset of buckling of the standard uniaxial specimen. Constant and variable amplitude fatigue tests extending into the high-strain short-life region were performed. Fatigue life data for multiple layer specimens were in good agreement with those obtained for single layer specimens.
Technical Paper

Fatigue Life Prediction of an Automotive Chassis System with Combined Hardening Material Model

2016-04-05
2016-01-0378
The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
Technical Paper

Fatigue Life Prediction for Variable Amplitude Strain Histories

1993-03-01
930400
This paper presents a model for fatigue life prediction for metals subjected to variable amplitude service loading. The model, which is based on crack growth and crack closure mechanisms for short fatigue cracks, incorporates a strain-based damage parameter, EΔε*, determined from the effective or open part of a strain cycle along with a fatigue resistance curve that takes the form: EΔε* = A(Nf)b, where E is the elastic modulus, Nf is the number of cycles to failure, and A and b are experimentally determined material constants. The fatigue resistance curve is generated for a SAE 1045 steel and the model is used successfully to predict the fatigue lives of smooth axial specimens subjected to two variable amplitude strain histories. The model is also used to predict the magnitude of non-damaging cycles that can be omitted from the strain histories to accelerate fatigue testing.
Technical Paper

Fatigue Evaluation of a Nodular Cast Iron Component

1992-02-01
920669
A ferritic-pearlitic nodular iron automobile suspension knuckle was fatigue tested in the laboratory using a constant amplitude load level that simulated a severe service condition. It was found that cracks always initiated from surface casting defects and that the fatigue life could be extended significantly by machining away the as-cast surface in the fatigue sensitive locations. Both local strain and fracture mechanics approaches were used successfully to predict the fatigue life of the component.
Technical Paper

Fatigue Behaviour of Thin Electrical Steel Sheets at Room Temperature

2023-04-11
2023-01-0805
Electrical steel, also known as silicon steel, is a ferromagnetic material that is often used in electric vehicles (EVs) for stator and rotor applications. Since the design and manufacturing of rotors require the use of laminated thin electrical steel sheets, the fatigue characterization of these single sheets is of interest. In this study, a 0.27mm thick non-oriented electrical steel sheet was tested under cyclic loading in the load-controlled mode with the load ratio R = 0.1 at room temperature. The specimens were prepared using the Computer Numerical Control (CNC) machining method. The Smith-Watson-Topper mean stress correction was used to find the equivalent fully reversed stress-life (S-N) curve. The Basquin equation was used to describe the fatigue strength of the electrical steel and the fatigue parameters were extracted. Furthermore, a design curve with a reliability of 90% and a confidence level of 90% was generated using Owen’s Tolerance Limit method.
X