Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear and Galvanic Corrosion Protection of Mg alloy via Plasma Electrolytic Oxidation Process for Mg Engine Application

2009-04-20
2009-01-0790
Sliding wear of magnesium (Mg) engine cylinder bore surfaces and corrosion of Mg engine coolant channels are the two unsolved critical issues that automakers have to deal with in development of magnesium-intensive engines. In this paper, Plasma Electrolytic Oxidation (PEO) process was used to produce oxide coatings on AJ62 Mg alloy to provide wear and corrosion protection. In order to optimize the PEO process, orthogonal experiments were conducted to investigate the effect of PEO process parameters on the wear properties of PEO coatings. The PEO coatings showed a much better wear resistance, as well as a smaller friction coefficient, than the AJ62 substrate. The galvanic corrosion property of AJ62 Mg coupled with stainless steel and aluminum (Al) was investigated via immersion corrosion test in an engine coolant. Applying PEO coating on Mg can effectively prevent the galvanic corrosion attack to Mg.
Technical Paper

Wear and Corrosion Behaviours of PEA Alumina Coatings on Gray Cast Iron

2022-03-29
2022-01-0329
Alumina (Al2O3) thin film coatings are applied on Al alloys using Plasma Electrolytic Oxidation (PEO) method to reduce the wear and corrosion problems. Plasma Electrolytic Aluminating (PEA) is a technique which could generate Alumina coatings on cast iron, mild steel and copper alloys. In this study, the aim is to explore the anti-wear and anti-corrosion behaviours of PEA Alumina coatings on gray cast iron. The dry sliding tribology test data was obtained from Pin-on-Disk (POD) tests against SAE 52100 steel and Tungsten Carbide (WC) counterfaces. Comparing with the PEO Alumina coatings, the PEA Alumina coating has much lower Coefficient of Friction (COF) and less wear. The microstructure, chemical composition and phase composition of this coating were investigated with Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD), respectively. There was FeO (or FeAl2O4) found on the PEA Alumina coating.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Technical Paper

Surface Effect of a PEO Coating on Friction at Different Sliding Velocities

2015-04-14
2015-01-0687
In order to reduce the weight of an automotive engine, an aluminum (Al) alloy engine block with cast iron liner has been successfully used to replace the gray cast iron engine. For newly emerging Al linerless engine in which the low surface hardness of the aluminum alloy has to be overcome, a few surface processing technologies are used to protect the surface of cylinders. Among them, plasma transferred wire arc (PTWA) thermal spraying coating is becoming popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum alloy and reducing the friction between the cylinder and piston. In this work, a PEO coating with a thickness of ∼20 μm was prepared, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coating at oil lubricant conditions. Different surface roughness of the coating and a large range of the sliding speeds were employed for the tests.
Technical Paper

Study of Heat Release Shaping via Dual-Chamber Piston Bowl Design to Improve Ethanol-Diesel Combustion Performance

2017-03-28
2017-01-0762
In this work, an innovative piston bowl design that physically divides the combustion chamber into a central zone and a peripheral zone is employed to assist the control of the ethanol-diesel combustion process via heat release shaping. The spatial combustion zone partition divides the premixed ethanol-air mixture into two portions, and the combustion event (timing and extent) of each portion can be controlled by the temporal diesel injection scheduling. As a result, the heat release profile of ethanol-diesel dual-fuel combustion is properly shaped to avoid excessive pressure rise rates and thus to improve the engine performance. The investigation is carried out through theoretical simulation study and empirical engine tests. Parametric simulation is first performed to evaluate the effects of heat release shaping on combustion noise and engine efficiency and to provide boundary conditions for subsequent engine tests.
Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Observations of the Relative Performance of Magnesium and Aluminum Steering Wheel Skeletons with Identical Geometry

2000-03-06
2000-01-0784
Automotive steering wheels depend on a structural skeleton made of steel, aluminum, or magnesium to be the basis for the mechanical properties of the finished part. The mechanical properties of concern are the fatigue properties and the crash performance. The purpose of this study was to evaluate the crash and the fatigue performance of a steering wheel skeleton fabricated by high pressure die casting. Two materials were used to produce two groups of wheels with identical geometry. The production part was designed, optimized and fabricated with AM50A magnesium. The production magnesium component met all of the regulatory design and performance requirements. A small sample run was made in a proprietary aluminum - magnesium alloy. The fatigue and crash properties were evaluated empirically. In fatigue testing, the aluminum skeletons displayed a significant improvement, with respect to the magnesium skeletons, in the number of cycles to failure at the loads tested.
Technical Paper

Noise Cancellation Technique for Automotive Intake Noise Using A Manifold Bridging Technique

2005-05-16
2005-01-2368
Due to considerable efforts of automobile manufacturers to attenuate various noise sources within the passenger compartment, other sources, including induction noise have become more noticeable. The present study investigates the feasibility of using a non-conventional noise cancellation technique to improve the acoustic performance of an automotive induction system by using acoustic energy derived from the exhaust manifold as the dynamic noise source to cancel intake noise. The validity of this technique was first investigated analytically using a computational engine simulation software program. Using these results, a physical model of the bridge was installed and tested on a motored engine. The realized attenuation of the intake noise was evaluated using conventional FFT analysis techniques as well as psychoacoustic metrics including loudness, sharpness, roughness and fluctuation strength.
Technical Paper

Metrics for Evaluating the Ride Handling Compromise

2010-04-12
2010-01-1139
Though the purpose of a vehicle's suspension is multi-faceted and complex, the fundamentals may be simply stated: the suspension exists to provide the occupants with a tolerable ride, while simultaneously ensuring that the tires maintain good contact with the ground. At the root of the familiar ride/handling compromise, is the problem that tuning efforts which improve either grip or handling are generally to the detriment of the other. This study seeks to set forth a clear means for examining the familiar ride/handing compromise, by first exploring the key ideas of these terms, and then by describing the development of content-rich metrics to permit a direct optimization strategy. For simplicity, the optimization problem was examined in a unilateral manner, where heave (vertical; z-axis) behaviour is examined in isolation, though the methods described herein may be extended to pitch and roll behaviour as well.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

Kinematic Analysis of a 6DOF Gantry Machine

2015-04-14
2015-01-0497
Gantry robots are mainly employed for applications requiring large workspace, with limited higher manipulability in one direction than the others. The Gantries offer very good mechanical stiffness and constant positioning accuracy, but low dexterity. Common gantries are CNC machines with three translational joints XYZ (3DOF) and usually with an attached wrist (+3DOF). The translational joints are used to move the tool in any position in the 3D workspace. The wrist is used to orient the tool by rotation about X, Y and Z axis. This standard kinematic structure (3T3R) produces a rectangular workspace. In this paper a full kinematic model for a 6DOF general CNC (gantry) machine is presented, along with the Jacobian matrix and singularity analysis. Using Denavit-Hartenberg convention, firstly, the general kinematic structure is presented, in order to assign frames at each link. The forward kinematic problem is solved using Maple 17 software.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Investigating Collaborative Robot Gripper Configurations for Simple Fabric Pick and Place Tasks

2019-04-02
2019-01-0699
Fiber composite materials are widely used in many industrial applications - specially in automotive, aviation and consumer goods. Introducing light-weighting material solutions to reduce vehicle mass is driving innovative materials research activities as polymer composites offer high specific stiffness and strength compared to contemporary engineering materials. However, there are issues related to high production volume, automation strategies and handling methods. The state of the art for the production of these light-weight flexible textile or composite fiber products is setting up multi-stage manual operations for hand layups. Material handling of flexible textile/fiber components is a process bottleneck. Consequently, the long term research goal is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. Collaborative robots allow for interactive human-machine tasks to be conducted.
Technical Paper

In-Cylinder Pressure Measurements with Optical Fiber and Piezoelectric Pressure Transducers

2002-03-04
2002-01-0745
Highly accurate cylinder pressure data can be acquired using a wall-mounted and water-cooled quartz piezoelectric transducer. However, this type of transducer does not satisfy the cost and packaging constraints when used in a production engine application. A potential solution to these issues that has been the interest of many is the much smaller and less expensive optical fiber based pressure transducer. This research compares Kistler piezoelectric transducers to Optrand optical fiber transducers. The influence of the transducer type and mounting arrangement on the quality of cylinder pressure data was examined. The transducers were evaluated on a DaimlerChrysler 4.7L V-8 Compressed Natural Gas fuelled test engine. The analysis method is comprised of examining measured individual cycle and ensemble-averaged cylinder pressure records to assess the quality of the data and its usefulness for engine management.
Technical Paper

Implementation of a Dual Coil Ignition Strategy in a Split-Cycle Engine

2019-04-02
2019-01-0726
A Split-Cycle engine fueled with methane has been constructed and operated at the University of Windsor. A split-cycle engine consists of two interconnected cylinders working together to preform the four engine strokes. Cylinder 1 preforms intake and compression strokes while cylinder 2 is where combustion, expansion and exhaust occur. The connecting high pressure crossover passage is where methane is injected, resulting in a well pre-mixed air-fuel mixture. Transfer occurs to the combustion cylinder near TDC, resulting in intense small scale turbulence that leads to short combustion durations under 30° CA. Short durations are achieved despite low engine speeds of 850-1200 rpm, late combustion phasing and part loads. Of note is the lean limit of operation of the engine at the equivalence ratio Φ = 0.85, which is high compared to other natural gas engines which have limits around Φ = 0.6.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
X