Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Technical Paper

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-1696
In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
Journal Article

Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

2014-04-01
2014-01-1182
An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. A detailed comparison was made between the different combustion regimes at a range of engine speed and load conditions. The closed-cycle integrated and peak heat transfer rates were found to be lower for HCCI and RCCI when compared to CDC. Under HCCI operation, the peak heat transfer rate showed sensitivity to the 50% burn location.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

1997-10-01
972883
Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
X