Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion

2017-03-28
2017-01-0773
Engine experiments were conducted on a heavy-duty single-cylinder engine to explore the effects of charge preparation, fuel stratification, and premixed fuel chemistry on the performance and emissions of Reactivity Controlled Compression Ignition (RCCI) combustion. The experiments were conducted at a fixed total fuel energy and engine speed, and charge preparation was varied by adjusting the global equivalence ratio between 0.28 and 0.35 at intake temperatures of 40°C and 60°C. With a premixed injection of isooctane (PRF100), and a single direct-injection of n-heptane (PRF0), fuel stratification was varied with start of injection (SOI) timing. Combustion phasing advanced as SOI was retarded between -140° and -35°, then retarded as injection timing was further retarded, indicating a potential shift in combustion regime. Peak gross efficiency was achieved between -60° and -45° SOI, and NOx emissions increased as SOI was retarded beyond -40°, peaking around -25° SOI.
Technical Paper

High Speed Dual-Fuel RCCI Combustion for High Power Output

2014-04-01
2014-01-1320
In recent years society's demand and interest in clean and efficient internal combustion engines has grown significantly. Several ideas have been proposed and tested to meet this demand. In particular, dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion has demonstrated high thermal efficiency, and low engine-out NOx, and soot emissions. Unlike homogeneous charge compression ignition (HCCI) combustion, which solely relies on the chemical kinetics of the fuel for ignition control, RCCI combustion has proven to provide superior combustion controllability while retaining the known benefits of low emissions and high thermal efficiency of HCCI combustion. However, in order for RCCI combustion to be adopted as a high efficiency and low engine-out emission solution, it is important to achieve high-power operation that is comparable to conventional diesel combustion (CDC).
X