Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Journal Article

X-ray Imaging of Cavitation in Diesel Injectors

2014-04-01
2014-01-1404
Cavitation plays a significant role in high pressure diesel injectors. However, cavitation is difficult to measure under realistic conditions. X-ray phase contrast imaging has been used in the past to study the internal geometry of fuel injectors and the structure of diesel sprays. In this paper we extend the technique to make in-situ measurements of cavitation inside unmodified diesel injectors at pressures of up to 1200 bar through the steel nozzle wall. A cerium contrast agent was added to a diesel surrogate, and the changes in x-ray intensity caused by changes in the fluid density due to cavitation were measured. Without the need to modify the injector for optical access, realistic injection and ambient pressures can be obtained and the effects of realistic nozzle geometries can be investigated. A range of single and multi-hole injectors were studied, both sharp-edged and hydro-ground. Cavitation was observed to increase with higher rail pressures.
Journal Article

X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

2017-09-04
2017-24-0178
The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from the sparking event is difficult to obtain. In this paper, we present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug.
Journal Article

Well-to-Wheels Emissions of Greenhouse Gases and Air Pollutants of Dimethyl Ether from Natural Gas and Renewable Feedstocks in Comparison with Petroleum Gasoline and Diesel in the United States and Europe

2016-10-17
2016-01-2209
Dimethyl ether (DME) is an alternative to diesel fuel for use in compression-ignition engines with modified fuel systems and offers potential advantages of efficiency improvements and emission reductions. DME can be produced from natural gas (NG) or from renewable feedstocks such as landfill gas (LFG) or renewable natural gas from manure waste streams (MANR) or any other biomass. This study investigates the well-to-wheels (WTW) energy use and emissions of five DME production pathways as compared with those of petroleum gasoline and diesel using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model developed at Argonne National Laboratory (ANL).
Journal Article

Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel

2016-10-17
2016-01-2208
Gasoline Compression Ignition (GCI) engines using a low octane gasoline-like fuel (LOF) have good potential to achieve lower NOx and lower particulate matter emissions with higher fuel efficiency compared to the modern diesel compression ignition (CI) engines. In this work, we conduct a well-to-wheels (WTW) analysis of the greenhouse gas (GHG) emissions and energy use of the potential LOF GCI vehicle technology. A detailed linear programming (LP) model of the US Petroleum Administration for Defense District Region (PADD) III refinery system - which produces more than 50% of the US refined products - is modified to simulate the production of the LOF in petroleum refineries and provide product-specific energy efficiencies. Results show that the introduction of the LOF production in refineries reduces the throughput of the catalytic reforming unit and thus increases the refinery profit margins.
Technical Paper

Vehicle-In-The-Loop Workflow for the Evaluation of Energy-Efficient Automated Driving Controls in Real Vehicles

2022-03-29
2022-01-0420
This paper introduces a new systematic workflow for the rapid evaluation of energy-efficient automated driving controls in real vehicles in controlled laboratory conditions. This vehicle-in-the-loop (VIL) workflow, largely standardized and automated, is reusable and customizable, saves time and minimizes costly dynamometer time. In the first case study run with the VIL workflow, an automated car driven by an energy-efficient driving control previously developed at Argonne used up to 22 % less energy than a conventional control. In a VIL experiment, the real vehicle, positioned on a chassis dynamometer, has a digital twin that drives in a virtual world that replicates real-life situations, such as approaching a traffic signal or following other vehicles.
Technical Paper

Variable Air Composition with Polymer Membrane - A New Low Emissions Tool

1998-02-01
980178
Air can be enriched with oxygen and/or nitrogen by selective permeation through a nonporous polymer membrane; this concept offers numerous potential benefits for piston engines. The use of oxygen-enriched intake air can significantly reduce exhaust emissions (except NOx), improve power density, lessen ignition delay, and allow the use of lower-grade fuels. The use of nitrogen-enriched air as a diluent can lessen NOx emissions and may be considered an alternative to exhaust gas recirculation (EGR). Nitrogen-enriched air can also be used to generate a monatomic-nitrogen stream, with nonthermal plasma, to treat exhaust NOx. With such synergistic use of variable air composition from an on-board polymer membrane, many emissions problems can be solved effectively. This paper presents an overview of different applications of air separation membranes for diesel and spark-ignition engines. Membrane characteristics and operating requirements are examined for use in automotive engines.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Validation Process of a HEV System Analysis Model: PSAT

2001-03-05
2001-01-0953
Hybrid electric vehicles (HEVs) combine two sources of energy and offer a wide variety of component and drivetrain configurations. However, optimizing the blending of these two energy sources is complex. Argonne National Laboratory (ANL) working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software, the PNGV System Analysis Toolkit (PSAT). PSAT allows users to choose the best configuration and to optimize the control strategy in simulations. The importance of component models and the complexity involved in setting up optimized control laws require validation of the models and control strategies developed in PSAT. In this paper, we first describe our capability to validate each component model with an actual component test, using test stand facilities. Once each component model has been validated, ANL can perform tests on a whole HEV by using a chassis dynamometer.
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

2019-04-02
2019-01-1248
Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced by close-gap platooning using information from vehicle-to-vehicle communications. In order to achieve these goals, the designers of control strategies need to simulate a wide range of driving situations in which vehicles interact with other vehicles and the infrastructure in a closed-loop fashion. RoadRunner is a new model-based system engineering platform based on Autonomie software, which can collectively provide the necessary tools to predict energy consumption for various driving decisions and scenarios such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithms.
Technical Paper

Uncertainty Quantification of Direct Injection Diesel and Gasoline Spray Simulations

2017-03-28
2017-01-0836
In this paper, large eddy simulation (LES) coupled with two uncertainty quantification (UQ) methods, namely latin-hypercube sampling (LHS) and polynomial chaos expansion (PCE), have been used to quantify the effects of model parameters and spray boundary conditions on diesel and gasoline spray simulations. Evaporating, non-reacting spray data was used to compare penetration, mixture fraction and spray probability contour. Two different sets of four uncertain variables were used for diesel and gasoline sprays, respectively. UQ results showed good agreement between experiments and predictions. UQ statistics indicated that discharge coefficient has stronger impact on gasoline than diesel sprays, and spray cone angle is important for vapor penetration of both types of sprays. Additionally, examination of the gasoline spray characteristics showed that plume-to-plume interaction and nozzle dribble are important phenomena that need to be considered in high-fidelity gasoline spray simulations.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

UV Absorbance Histories and Knock in a Spark Ignited Engine

1969-02-01
690519
Monochromatic ultraviolet (UV) absorbance, temperature, and pressure histories of unburned gas in a single cylinder CFR engine under motored, fired, and autoignition conditions were recorded on a multichannel magnetic tape recorder. Isooctane, cyclohexane, ethane, n-hexane, n-heptane, 75 octane number (ON), 50 ON, and 25 ON blends of primary reference fuels (PRF) were studied. Under knocking or autoignition conditions a critical absorbance at 2600 A was found, whose magnitude was independent of engine operating variables and dependent only on the knock resistance of the fuel. This absorbance increased rapidly when a certain temperature level was exceeded during the exothermic preflame reactions.
Technical Paper

US National Laboratory R&D Programs in Support of Electric and Hybrid Electric Vehicle Batteries

2002-06-03
2002-01-1948
The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper

Transient Particulate Emission Measurements in Diesel Engine Exhausts

2003-10-27
2003-01-3155
This paper reports our efforts to develop an instrument, TG-1, to measure particulate emissions from diesel engines in real-time. TG-1 while based on laser-induced incandescence allows measurements at 10 Hz on typical engine exhausts. Using such an instrument, measurements were performed in the exhaust of a 1.7L Mercedes Benz engine coupled to a low-inertia dynamometer. Comparative measurements performed under engine steady state conditions showed the instrument to agree within ±12% of measurements performed with an SMPS. Moreover, the instrument had far better time response and time resolution than a TEOM® 1105. Also, TG-1 appears to surpass the shortcomings of the TEOM instrument, i.e., of yielding negative values under certain engine conditions and, being sensitive to external vibration.
Journal Article

Towards Developing an Unleaded High Octane Test Procedure (RON>100) Using Toluene Standardization Fuels (TSF)

2020-09-15
2020-01-2040
An increase in spark-ignition engine efficiency can be gained by increasing the engine compression ratio, which requires fuels with higher knock resistance. Oxygenated fuel components, such as methanol, ethanol, isopropanol, or iso-butanol, all have a Research Octane Number (RON) higher than 100. The octane numbers (ON) of fuels are rated on the CFR F1/F2 engine by comparing the knock intensity of a sample fuel relative to that of bracketing primary reference fuels (PRF). The PRFs are a binary blend of iso-octane, which is defined to an ON of 100, and n-heptane, which represents an ON of 0. Above 100 ON, the PRF scale continues by adding diluted tetraethyl lead (TEL) to iso-octane. However, TEL is banned from use in commercial gasoline because of its toxicity. The ASTM octane number test methods have a “Fit for Use” test that validate the CFR engine’s compliance with the octane testing method by verifying the defined ON of toluene standardization fuels (TSF).
Technical Paper

Time-Resolved and Quantitative Characterization of Highly Transient Gasoline Sprays by X-Radiography

2002-06-03
2002-01-1893
Using synchrotron x-radiography and mass deconvolution techniques, this work reveals strikingly interesting structural and dynamic characteristics of the direct injection (DI) gasoline hollow-cone sprays in the near-nozzle region. Employed to measure the sprays, x-radiography allows quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs, revealing the most detailed near-nozzle mass distribution of a DI gasoline fuel spray ever detected. Based on the x-radiographs of the spray collected from four different perspectives, enhanced mathematical and numerical analyses were developed to deconvolute the mass density of the gasoline hollow-cone spray. This leads to efficient and accurate regression curve fitting of the measured experimental data to obtain essential parameters of the density distribution that are then used in reconstructing the cross-sectional density distribution at various times and locations.
Technical Paper

Three-Dimensional CFD Investigation of Pre-Spark Heat Release in a Boosted SI Engine

2021-04-06
2021-01-0400
Low-temperature heat release (LTHR) in spark-ignited internal combustion engines is a critical step toward the occurrence of auto-ignition, which can lead to an undesirable phenomenon known as engine knock. Hence, correct predictions of LTHR are of utmost importance to improve the understanding of knock and enable techniques aimed at controlling it. While LTHR is typically obscured by the deflagration following the spark ignition, extremely late ignition timings can lead to LTHR occurrence prior to the spark, i.e., pre-spark heat release (PSHR). In this research, PSHR in a boosted direct-injection SI engine was numerically investigated using three-dimensional computational fluid dynamics (CFD). A hybrid approach was used, based on the G-equation model for representing the turbulent flame front and the multi-zone well-stirred reactor model for tracking the chemical reactions within the unburnt region.
Technical Paper

Thin-Film High Voltage Capacitors on Ultra-Thin Glass for Electric Drive Vehicle Inverter Applications

2014-04-01
2014-01-0417
The propulsion system in most Electric Drive Vehicles (EDVs) requires an internal combustion engine in combination with an alternating current (AC) electric motor. An electronic device called a power inverter converts battery DC voltage into AC power for the motor. The inverter must be decoupled from the DC source, so a large DC-link capacitor is placed between the battery and the inverter. The DC-link capacitors in these inverters negatively affect the inverters size, weight and assembly cost. To reduce the design/cost impact of the DC-link capacitors, low loss, high dielectric constant (κ) ferroelectric materials are being developed. Ceramic ferroelectrics, such as (Pb,La)(Zr,Ti)O3 [PLZT], offer high dielectric constants and high breakdown strength. Argonne National Laboratory and Delphi Electronics & Safety have been developing thin-film capacitors utilizing PLZT.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

1967-02-01
670466
This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
X