Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Influence of Test Site on Exterior Vehicle Noise Measurements

1974-02-01
740967
As the compliance with noise legislation became more difficult, Ford exhaust system development engineers increasingly encountered variances not only from vehicle-to-vehicle, but on the same vehicle tested in different locations. As a result, a series of tests were conducted to establish the correlation among various sites for vehicle exterior noise measurements. The purpose of this paper is to present the results and the method developed to achieve the correlation in terms of the following: 1. Ford and site equipment differences 2. Driver differences 3. Differences between site physical qualities Seven sites were evaluated in the program where seven vehicles were used with a good spread in exterior noise levels. A representative correlation plot is also presented which can be used to predict the expected noise level of any vehicle at any one of these test sites knowing the level obtained at the Ford site.
Technical Paper

Determination of Accumulated Structural Loads from S/N Gage Resistance Measurements

1973-02-01
730139
A new, low cost method to determine the accumulated structural loads in service (not to predict component fatigue life) that requires practically no on-board instrumentation is discussed. This method makes use of S/N fatigue life gages with high-gain mechanical multipliers bonded to a component. Permanent change in gage resistance results from the number of component load cycles and their magnitudes. These resistance change data are then used to reconstruct the load range history. The computer program on this method is listed in the Appendix. Results of laboratory tests conducted to validate the new method and evaluate the behavior of the multipliers over a practical range of operating temperature and strain magnitude and frequency are presented. The component load range distribution estimated by this method is compared to that measured by conventional methods for a vehicle operating on a proving ground route.
X