Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization and Modeling of Pilot Injection and Combustion in Diesel Engines

1996-02-01
960833
An endoscope-based image acquisition-and-processing camera system was used for diagnostics of pilot injection combustion in a single-cylinder heavy duty diesel engine. A study of the pilot injection or light load is of interest because the spray breakup, mixing and vaporization processes are less influenced by heat feedback from the flame than in full injection cases. This allows the spray process to be decoupled from the combustion process. The experimental cases were modeled using a version of the KIVA-II code that includes improvements in the turbulence, wall heat transfer, spray, ignition and combustion models. Pilot injections of three different amounts (10, 15 and 20% of the fuel injected at 75% load and 1600 RPM) at different start-of-injection timings were studied. The imaging system included an endoscope, an intensified CID camera, a frame grabber and the control circuitry.
Journal Article

The Influence of Diesel End-of-Injection Rate Shape on Combustion Recession

2015-04-14
2015-01-0795
The effect of the shape of the EOI was investigated through a pressure-modulated injection system in order to improve the understanding of the last portion of the traditional diesel diffusion combustion process. Here, the combustion recession at EOI is when the combustion of a mixing controlled diesel jet recedes backwards toward the fuel injector nozzle orifice. Combustion recession was observed using combustion luminosity imaging filtered at 309 nm to capture OH* chemiluminescence and 430 nm to capture CH* chemiluminescence, although soot Natural Luminosity (NL) will also be visible in these measurements. Experimental spray vessel results show that for relatively slow EOI decelerations below 1 ×106 to 2 ×106 m/s2, combustion strongly recesses completely back to the nozzle in both OH* and CH*/NL imaging. 1-D jet mixing calculations add support that this strong recession is indeed fuel rich.
Technical Paper

The Effect of Intake Air Temperature, Compression Ratio and Coolant Temperature on the Start of Heat Release in an HCCI (Homogeneous Charge Compression Ignition) Engine

2001-12-01
2001-01-1880
In this paper, effect of intake air temperature, coolant temperature, and compression ratio on start of heat release (SOHR) in HCCI engines is investigated. The operational range with HCCI operation was determined experimentally using a CFR (Cooperative Fuels Research) engine with n-butane as the fuel. In-cylinder pressure was processed to evaluate SOHR. The effect of intake air and coolant temperature on SOHR increases as engine speed increases. In order to gain more insight into the combustion phenomena, SOHR was calculated using the theory of Livengood-Wu and compared with the experimental data. Dependence of SOHR on the equivalence ratio shows good correspondence between experiment and calculation. On the contrary, dependence on the intake air temperature and compression ratio shows poorer correspondence with predictions, especially under low engine speed. We interpret this as an indication of the importance of the active intermediate species that remain in the combustion chamber.
Technical Paper

Stoichiometric Combustion in a HSDI Diesel Engine to Allow Use of a Three-way Exhaust Catalyst

2006-04-03
2006-01-1148
The objectives of this study were 1) to evaluate the characteristics of rich diesel combustion near the stoichiometric operating condition, 2) to explore the possibility of stoichiometric operation of a diesel engine in order to allow use of a three-way exhaust after-treatment catalyst, and 3) to achieve practical operation ranges with acceptable fuel economy impacts. Boost pressure, EGR rate, intake air temperature, fuel mass injected, and injection timing variations were investigated to evaluate diesel stoichiometric combustion characteristics in a single-cylinder high-speed direct injection (HSDI) diesel engine. Stoichiometric operation in the Premixed Charge Compression Ignition (PCCI) combustion regime and standard diesel combustion were examined to investigate the characteristics of rich combustion. The results indicate that diesel stoichiometric operation can be achieved with minor fuel economy and soot impact.
Technical Paper

Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion with a HSDI Diesel Engine

2006-04-03
2006-01-0918
The effect of spray targeting on exhaust emissions, especially soot and carbon monoxide (CO) formation, were investigated in a single-cylinder, high-speed, direct-injection (HSDI) diesel engine. The spray targeting was examined by sweeping the start-of-injection (SOI) timing with several nozzles which had different spray angles ranging from 50° to 154°. The tests were organized to monitor the emissions in Premixed Charge Compression Ignition (PCCI) combustion by introducing high levels of EGR (55%) with a relatively low compression ratio (16.0) and an open-crater type piston bowl. The study showed that there were optimum targeting spots on the piston bowl with respect to soot and CO formation, while nitric oxide (NOx) formation was not affected by the targeting. The soot and CO production were minimized when the spray was targeted at the edge of the piston bowl near the squish zone, regardless of the spray angle.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Six-Mode Cycle Evaluation of the Effect of EGR and Multiple Injections on Particulate and NOx Emissions from a D.I. Diesel Engine

1996-02-01
960316
An emissions and performance study was conducted to explore the effects of exhaust gas recirculation (EGR) and multiple injections on the emission of oxides of nitrogen (NOx), particulate emissions, and brake specific fuel consumption (BSFC) over a wide range of engine operating conditions. The tests were conducted on an instrumented single cylinder version of the Caterpillar 3400 series heavy duty Diesel engine. Data was taken at 1600 rev/min, and 75% load, and also at operating conditions taken from a 6-mode simulation of the federal transient test procedure (FTP). The fuel system used was an electronically controlled, common rail injector and supporting hardware. The fuel system was capable of as many as four independent injections per combustion event at pressures from 20 to 120MPa.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

Positive Displacement Calibration for Laboratory Flowmeters

1995-09-01
952093
Positive displacement flowmeters can be used to simply and accurately calibrate common flow transducers such as axial turbine and target flowmeters. Two means of utilizing positive displacement devices were studied for use as a laboratory flowmeter calibration. The first method employed a fixed displacement axial piston motor. This proved unsatisfactory due to the difficulty in quantifying flow losses. The second method used a large hydraulic cylinder. An optical encoder measured the position of the cylinder rod, permitting a direct calculation of the flow through the in-line flowmeter being calibrated. Because cylinder leakage is virtually zero at low pressure, flow can be readily calculated knowing the effective cylinder diameter and piston velocity. The method described in this paper permits flow rates to be measured with an accuracy of ±0.1% of the volumetric flow rate. This paper discusses details of the design of the flowmeter and calibration method.
Journal Article

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

2012-04-16
2012-01-0380
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that produces low NO and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom-machined pistons designed for RCCI operation.
Technical Paper

Particle Image Velocimetry Measurements in the Piston Bowl of a DI Diesel Engine

1994-03-01
940283
Particle Image Velocimetry (PIV) was used to make gas velocity and turbulence measurements in a motored diesel engine. The experiments were conducted using a single-cylinder version of the Caterpillar 3406 production engine. One of the exhaust valves and the fuel injector port were used to provide optical access to the combustion chamber so that modifications to the engine geometry were minimal, and the results are representative of the actual engine. Measurements of gas velocity were made in a plane in the piston bowl using TiO2 seed particles. The light sheet necessary for PIV was formed by passing the beam from a Nd:YAG laser through the injector port and reflecting the beam off a conical mirror at the center of the piston. PIV data was difficult to obtain due to significant out-of-plane velocities. However, data was acquired at 25° and 15° before top dead center of compression at 750 rev/min.
Technical Paper

Overview of Diesel Emission Control-Sulfur Effects Program

2000-06-19
2000-01-1879
This paper describes the results of Phase 1 of the Diesel Emission Control - Sulfur Effects (DECSE) Program. The objective of the program is to determine the impact of fuel sulfur levels on emissions control systems that could be used to lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from vehicles with diesel engines. The DECSE program has now issued four interim reports for its first phase, with conclusions about the effect of diesel sulfur level on PM and total hydrocarbon (THC) emissions from the high-temperature lean-NOx catalyst, the increase of engine-out sulfate emissions with higher sulfur fuel levels, the effect of sulfur content on NOx adsorber conversion efficiencies, and the effect of fuel sulfur content on diesel oxidation catalysts, causing increased PM emissions above engine-out emissions under certain operating conditions.
Technical Paper

Optical Investigation of the Impact of Pilot Ratio Variations on Natural Gas Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1159
Experiments were performed on a small-bore optically accessible engine to investigate diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) dual-fuel combustion strategies with direct injection of natural gas and diesel. Parametric variations of pilot ratio were performed. Natural luminosity and OH chemiluminescence movies of the combustion processes were captured at 28.8 and 14.4 kHz, respectively. These data were used to create ignition maps, which aided in comparing the propagation modes of the two combustion strategies. Lower pilot ratios resulted in lower initial heat release rates, and the initial ignition sites were generally smaller and less luminous; for increased pilot ratios the initial portion of the heat release was larger, and the ignition sites were large and bright. Comparisons between diesel pilot ignition and reactivity controlled compression ignition showed differences in combustion propagation mechanisms.
Journal Article

Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion

2009-11-02
2009-01-2699
The effects of spray targeting on mixing, combustion, and pollutant formation under a low-load, late-injection, low-temperature combustion (LTC) diesel operating condition are investigated by optical engine measurements and multi-dimensional modeling. Three common spray-targeting strategies are examined: conventional piston-bowl-wall targeting (152° included angle); narrow-angle floor targeting (124° included angle); and wide-angle piston-bowl-lip targeting (160° included angle). Planar laser-induced fluorescence diagnostics in a heavy-duty direct-injection optical diesel engine provide two-dimensional images of fuel-vapor, low-temperature ignition (H2CO), high-temperature ignition (OH) and soot-formation species (PAH) to characterize the LTC combustion process.
Technical Paper

On Non-Equilibrium Turbulence Corrections in Multidimensional HSDI Diesel Engine Computations

2001-03-05
2001-01-0997
The introduction of high-pressure injection systems in D.I. diesel engines has highlighted already known drawbacks of in-cylinder turbulence modeling. In particular, the well known equilibrium hypothesis is far from being valid even during the compression stroke and moreover during the spray injection and combustion processes when turbulence energy transfer between scales occurs under non-equilibrium conditions. The present paper focuses on modeling in-cylinder engine turbulent flows. Turbulence is accounted for by using the RNG k-ε model which is based on equilibrium turbulence assumptions. By using a modified version of the Kiva-3 code, different mathematically based corrections to the computed macro length scale are proposed in order to account for non-equilibrium effects. These new approaches are applied to a simulation of a recent generation HSDI Diesel engine at both full load and partial load conditions representative of the emission EUDC cycle.
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
Technical Paper

Multidimensional Simulation of PCCI Combustion Using Gasoline and Dual-Fuel Direct Injection with Detailed Chemical Kinetics

2007-04-16
2007-01-0190
Homogeneous or partially premixed charge compression ignition combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, since it is difficult to control the start of combustion timing, direct injection of fuel into the combustion chamber is often used for combustion phasing control, as well as charge preparation. In this paper, numerical simulations of compression ignition processes using gasoline fuel directly injected using a low pressure, hollow cone injector are presented. The multi-dimensional CFD code, KIVA3V, that incorporates various advanced sub-models and is coupled with CHEMKIN for modeling detailed chemistry, was used for the study. Simulation results of the spray behavior at various injection conditions were validated with available experimental data.
Technical Paper

Multi-Dimensional Modeling of Heat and Mass Transfer of Fuel Films Resulting from Impinging Sprays

1998-02-23
980132
To help account for fuel distribution during combustion in diesel engines, a fuel film model has been developed and implemented into the KIVA-II code [1]. Spray-wall interaction and spray-film interaction are also incorporated into the model. Modified wall functions for evaporating, wavy films are developed and tested. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity, momentum and energy equations for the two dimensional film that flows over a three dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, dynamic pressure effects, and convective heat and mass transfer.
Technical Paper

Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry

2003-03-03
2003-01-1043
Recent measurements by Siebers et al. have shown that the flame of a high pressure Diesel spray stabilizes under quiescent conditions at a location downstream of the fuel injector. The effects of various ambient and injection parameters on the flame “lift-off” length have been investigated under typical Diesel conditions in a constant-volume combustion vessel. In the present study, the experiments of Siebers et al. have been modeled using a modified version of the KIVA-3V engine simulation code. Fuel injection and spray breakup are modeled using the KH-RT model that accounts for liquid surface instabilities due to the Kelvin-Helmholtz and Rayleigh-Taylor mechanisms. Combustion is simulated using Convergent Thinking's recently developed detailed transient chemistry solver (SAGE) that allows for any number of chemical species and reactions to be modeled.
Technical Paper

Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

2002-03-04
2002-01-1158
A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NOx emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NOx emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NOx through controlled enhancement of in-cylinder mixing.
X