Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Technical Paper

Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System

1999-03-01
1999-01-1112
An experimental study of luminous combustion in a modern diesel engine was performed to investigate the effect of injection parameters on NOX and soot formation via flame temperature and soot KL factor measurements. The two-color technique was applied to 2-D soot luminosity images and area-averaged soot radiation signals to obtain spatially and temporally resolved flame temperature and soot KL factor. The imaging system used for this study was based on a wide-angle endoscope that was mounted in the cylinder head and allowed different views of the combustion chamber. The experiments were carried out on a single-cylinder 2.4 liter D.I. diesel engine equipped with an electronically controlled common-rail injection system. Operating conditions were 1600 rpm and 75% load. The two-color results confirm that retarding the injection timing causes lower flame temperatures and NOX emissions but increased soot formation, independent of injection strategy.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Time-Resolved Emission Sampling in a Direct-Injection Engine

1999-09-28
1999-01-3309
Time-resolved measurements were made of the gas composition at the exhaust port of a direct-injection two-stroke engine operating at 2000 rpm and an air-fuel ratio of 30:1. A high-speed sampling valve capable of 1.0 ms (12 CAD) time resolution was used to collect samples 1 cm downstream of the exhaust port of the engine. The time-resolved NOx, CO2 and CO concentrations decreased continuously during the scavenging process due to the dilution by short-circuited air. The hydrocarbon emissions, however, behaved significantly differently from the other species. At the time of exhaust port opening the concentration was low, it reached a maximum value by BDC, then decreased slightly in the latter part of the scavenging event. The dilution rates calculated for the hydrocarbon data gave negative values, indicating that there was a significant production of hydrocarbons during the gas exchange period.
Technical Paper

The Influence of Boost Pressure on Emissions and Fuel Consumption of a Heavy-Duty Single-Cylinder D.I. Diesel Engine

1999-03-01
1999-01-0840
An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE) was used to study diesel combustion. The SCOTE retains the port, combustion chamber, and injection geometry of the production six cylinder, 373 kW (500 hp) 3406E heavy-duty truck engine. The engine was equipped with an electronic unit injector and an electronically controlled common rail injector that is capable of multiple injections. An emissions investigation was carried out using a six-mode cycle simulation of the EPA Federal Transient Test Procedure. The results show that the SCOTE meets current EPA mandated emissions levels, despite the higher internal friction imposed by the single-cylinder configuration. NOx versus particulate trade-off curves were generated over a range of injection timings for each mode and results of heat release calculations were examined, giving insight into combustion phenomena in current “state of the art” heavy-duty diesel engines.
Technical Paper

The Effects of Mixture Stratification on Combustion in a Constant-Volume Combustion Vessel

1998-02-01
980159
The role of mixture stratification on combustion rate has been investigated in a constant volume combustion vessel in which mixtures of different equivalence ratios can be added in a spatially and temporally controlled fashion. The experiments were performed in a regime of low fluid motion to avoid the complicating effects of turbulence generated by the injection of different masses of fluid. Different mixture combinations were investigated while maintaining a constant overall equivalence ratio and initial pressure. The results indicate that the highest combustion rate for an overall lean mixture is obtained when all of the fuel is contained in a stoichiometric mixture in the vicinity of the ignition source. This is the result of the high burning velocity of these mixtures, and the complete oxidation which releases the full chemical energy.
Technical Paper

The Effect of Split Injection on Soot and NOx Production in an Engine-Fed Combustion Chamber

1993-10-01
932655
This research focused on the effects of split injection on combustion in a diesel environment. It was done in a specially designed engine-fed combustion chamber (swirl ratio of 5) with full field optical access through a quartz window. The simulated engine combustion chamber used a special backwards spraying injector (105°). The electronically controlled injector could control the size and position of it's, two injections. Both injections were through the same nozzle and it produced very rapid injections (1.5 ms) with a maximum injection pressure of 130 MPa. Experimental data included: rate of injection, injector pressure, combustion chamber dumping (NO & NOx concentrations), flame temperature, KL factor (soot concentration) combustion pressure, and rate of pressure rise. Injection rates indicate that the UCORS injection system creates very rapid injections with the ability to produce controllable split injections.
Technical Paper

The Effect of Split Injection on Fuel Distribution in an Engine-Fed Combustion Chamber

1993-03-01
930864
This research focused on the effects of split injection on fuel spray behavior in a diesel environment. It was done in a special designed engine-fed combustion chamber (swirl ratio of 5) with full field optical access through a quartz window. The simulated engine combustion chamber used a special backwards spraying injector (105°). The electronically controlled injector could control the size and position of it's two injections. Both injections were through the same nozzle and it produced very rapid injections (1.5 ms) with a maximum injection pressure of 130 MPa. Experimental data included: rate of injection, injector pressure, spray plume images, tip penetration, liquid and vapor fuel distributions, combustion pressure, and rate of pressure rise. From 105° forward scatter images, tip penetration was observed to be very rapid and reached a plateau at 25 mm.
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

The Effect of Ethanol Fuels on the Power and Emissions of a Small Mass-Produced Utility Engine

2020-01-24
2019-32-0607
The effect of low level ethanol fuel on the power and emissions characteristics was studied in a small, mass produced, carbureted, spark-ignited, Briggs and Stratton Vanguard 19L2 engine. Ethanol has been shown to be an attractive renewable fuel by the automotive industry; having anti-knock properties, potential power benefits, and emissions reduction benefits. With increasing availability and the possible mandates of higher ethanol content in pump gasoline, there is interest in exploring the effect of using higher content ethanol fuels in the small utility engine market. The fuels in this study were prepared by gravimetrically mixing 98.7% ethanol with a balance of 87 octane no-ethanol gasoline in approximately 5% increments from pure gasoline to 25% ethanol. Alcor Petrolab performed fuel analysis on the blended fuels and determined the actual volumetric ethanol content was within 2%.
Technical Paper

The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

1995-02-01
950278
An integrated numerical model has been developed for diesel engine computations based on the KIVA-II code. The model incorporates a modified RNG k-ε, turbulence model, a ‘wave’ breakup spray model, the Shell ignition model, the laminar-and-turbulent characteristic-time combustion model, a crevice flow model, a spray/wall impingement model that includes rebounding and breaking-up drops, and other improved submodels in the KIVA code. The model was validated and applied to model successfully different types of diesel engines under various operating conditions. These engines include a Caterpillar engine with different injection pressures at different injection timings, a small Tacom engine at different loads, and a Cummins engine modified by Sandia for optical experiments. Good levels of agreement in cylinder pressures and heat release rate data were obtained using the same computer model for all engine cases.
Technical Paper

Studying the Roles of Kinetics and Turbulence in the Simulation of Diesel Combustion by Means of an Extended Characteristic-Time-Model

1999-03-01
1999-01-1177
A study was performed that takes into account both turbulence and chemical kinetic effects in the numerical simulation of diesel engine combustion in order to better understand the importance of their respective roles at changing operating conditions. An approach was developed which combines the simplicity and low computational and storage requests of the laminar-and-turbulent characteristic-time model with a detailed combustion chemistry model based on well-known simplified mechanisms. Assuming appropriate simplifications such as steady state or equilibrium for most of the radicals and intermediate species, the kinetics of hydrocarbons can be described by means of three overall steps. This approach was integrated in the KIVA-II code. The concept was validated and applied to a single-cylinder, heavy-duty engine. The simulation covers a wide range of operating conditions.
Technical Paper

Spray Combustion and Emissions in a Direct-Injection Two Stroke Engine With Wall-Stabilization of an Air-Assisted Spray

1997-02-24
970360
Previous experiments using an air-assisted spray in a two-stroke direct-injected engine demonstrated a significant improvement in combustion stability at part-load conditions when a wide injection spray was used. It was hypothesized that the decrease in variability was due to the spray following the combustion chamber wall, making it less affected by variations in the in-cylinder gas flows. For this study, experiments were conducted to investigate engine spray combustion for cases where engine performance was not dominated by cyclic variation. Combustion and emission performance data was collected for a wide range of injection timings at several speed/load conditions. Experimental data for combustion shows that combustion stability is relatively unaffected by injection timing changes over a 40 to 100 degree window, and tolerant to spark gap projections over a range of 0.7 to 5.2 mm, depending on operating conditions.
Technical Paper

Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1993-03-01
930924
An experimental investigation of the spectral characteristics of turbulent flow in a scale model of a high pressure diesel fuel injector nozzle hole has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of an injector nozzle using an Aerometrics Phase/Doppler Particle Analyzer (PDPA) in the velocity mode. Turbulence spectra were calculated from the velocity data using the Lomb-Scargle method. Injector hole length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Results were obtained for a steady flow average Reynolds number of 10,500, which is analogous to a fuel injection velocity of 320 m/s and a sac pressure of approximately 67 MPa (10,000 psi). Turbulence time frequency spectra were obtained for significant locations in each geometry, in order to determine how geometry affects the development of the turbulent spectra.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Technical Paper

Simplified Engine Combustion Diagnostics Using “Synthetic” Variables

2000-03-06
2000-01-0364
This paper presents a diagnostics methodology that has applications to internal combustion engines as well as other dynamic devices. Included is an overview of the theoretical foundation of the approach, discussions on its application to internal combustion engine diagnostics, and experimental engine data showing the application of this methodology. Also included are the recent developments addressing issues of the effect of motoring compression and expansion work on crankshaft speed fluctuations and the resulting torque estimation. The methodology consists of a hard-wired nonlinear to linear transformation of engine variables that allow all subsequent diagnostics and control calculations to use linear mathematics, which significantly simplifies the size and complexity of the engine control and diagnostics strategy and code.
Technical Paper

Scaling Aspects of the Characteristic Time Combustion Model in the Simulation of Diesel Engines

1999-03-01
1999-01-1175
Combustion simulations utilizing the characteristic time combustion model have been performed for four DI diesel engines ranging in size from heavy-duty to large-bore designs. It has been found that the pre-factor to the turbulent characteristic time acts as a scaling parameter between the engines. This phenomenon is explained in terms of the non-equilibrium behavior of the turbulent time and length scales, as is encountered in the rapidly distorting, spray-induced flows of DI diesel engines. In fact, the equilibrium assumption between turbulence production and dissipation, which forms the basis for the employed k-ε-type turbulence models, does not hold in these situations. For such flows, the real turbulent dissipation time scale is locally proportional to the turbulent characteristic time scale which is determined by a typical eddy turnover time.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
X