Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Yaw Rate Based Trailer Hitch Angle Estimation for Trailer Backup Assist

2017-03-28
2017-01-0027
In the current Ford Pro-Trailer Backup Assist (TBA) system, trailer hitch angle is determined utilizing the reverse camera of the vehicle. In addition to being sensitive to environmental factors such as lighting conditions and occlusion, the vision-based approach is difficult to be applied to gooseneck or fifth wheel trailers. In this paper, a yaw rate based hitch angle observer is proposed as an alternative sensing solution for TBA. Based on the kinematic model of the vehicle-trailer, an instantaneous hitch angle is first derived by utilizing vehicle yaw rate, trailer yaw rate, vehicle velocity and vehicle/trailer parameters provided by the TBA system. Due to signal errors and parameter uncertainties, this instantaneous hitch angle may be noisy, especially at lower vehicle speed.
Technical Paper

Vehicle Deep Data: A Case Study in Robust Scalable Data Collection

2017-03-28
2017-01-1651
Onboard, embedded cellular modems are enabling a range of new connectivity features in vehicles and rich, real-time data set transmissions from a vehicle’s internal network up to a cloud database are of particular interest. However, there is far too much information in a vehicle’s electrical state for every vehicle to upload all of its data in real-time. We are thus concerned with which data is uploaded and how that data is processed, structured, stored, and reported. Existing onboard data processing algorithms (e.g. for DTC detection) are hardcoded into critical vehicle firmware, limited in scope and cannot be reconfigured on the fly. Since many use cases for vehicle data analytics are still unknown, we require a system which is capable of efficiently processing and reporting vehicle deep data in real-time, such that data reporting can be switched on/off during normal vehicle operation, and that processing/reporting can be reconfigured remotely.
Technical Paper

Using Machine Learning to Guide Simulations Over Unique Samples from Trip Profiles

2018-04-03
2018-01-1202
Electric vehicles are highly sensitive to variations in environmental factors (like temperature, drive style, grade, etc.). The distribution of real-world range of electric vehicles due to these environmental factors is an important consideration in target setting. This distribution can be obtained by running several simulations of an electric vehicle for a number of high-frequency velocity, grade, and temperature real-world trip profiles. However, in order to speed up simulation time, a unique set of drive profiles that represent the entire real-world data set needs to be developed. In this study, we consider 40,000 unique velocity and grade profiles from various real-world applications in EU. We generate metadata that describes these profiles using trip descriptor variables. Due to the large number of descriptor variables when considering second order effects, we normalize each descriptor and use principal component analysis to reduce the dimensions of our dataset to six components.
Technical Paper

Use of Body Mount Stiffness and Damping In CAE Crash Modeling

2000-03-06
2000-01-0120
This paper reports a study of the dynamic characteristics of body mounts in body on frame vehicles and their effects on structural and occupant CAE results. The body mount stiffness and damping are computed from spring-damper models and component test results. The model parameters are converted to those used in the full vehicle structural model to simulate the vehicle crash performance. An effective body mount in a CAE crash model requires a set of coordinated damping and stiffness to transfer the frame pulse to the body. The ability of the pulse transfer, defined as transient transmissibility[1]1, is crucial in the early part of the crash pulse prediction using a structural model such as Radioss[2]. Traditionally, CAE users input into the model the force-deflection data of the body mount obtained from the component and/or full vehicle tests. In this practice, the body mount in the CAE model is essentially represented by a spring with the prescribed force-deflection data.
Technical Paper

Transmission Modulating Valve Simulation and Simulation Verification

1990-04-01
900917
This paper presents a response to the question: Simulation - mathematical manipulation or useful design tool? A mathematical model of a modulating valve in a transmission control system was developed to predict clutch pressure modulation characteristics. The transmission control system was previously reported in SAE Paper 850783 - “Electronic/Hydraulic Transmission Control System for Off-Highway Vehicles”. The comparison of simulation predictions with test data illustrates the effectiveness of simulation as a design tool. THE EVOLUTION OF COMPUTER hardware and simulation software has resulted in increased interest and usage of simulation for dynamic analysis of hydraulic systems. Most commercially available software is relatively easy to learn to use. The application of such software and the modeling techniques involved require a longer learning curve.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Traffic State Identification Using Matrix Completion Algorithm Under Connected and Automated Environment

2021-12-15
2021-01-7004
Traffic state identification is a key problem in intelligent transportation system. As a new technology, connected and automated vehicle can play a role of identifying traffic state with the installation of onboard sensors. However, research of lane level traffic state identification is relatively lacked. Identifying lane level traffic state is helpful to lane selection in the process of driving and trajectory planning. In addition, traffic state identification precision with low penetration of connected and automated vehicles is relatively low. To fill this gap, this paper proposes a novel method of identifying traffic state in the presence of connected and automated vehicles with low penetration rate. Assuming connected and automated vehicles can obtain information of surrounding vehicles’, we use the perceptible information to estimate imperceptible information, then traffic state of road section can be inferred.
Technical Paper

Time to Torque Optimization by Evolutionary Computation Methods

2017-03-28
2017-01-1629
Time to torque (TTT) is a quantity used to measure the transient torque response of turbocharged engines. It is referred as the time duration from an idle-to-full step torque command to the time when 95% of maximum torque is achieved. In this work, we seek to control multiple engine actuators in a collaborative way such that the TTT is minimized. We pose the TTT minimization problem as an optimization problem by parameterizing each engine actuator’s transient trajectory as Fourier series, followed by minimizing proper cost function with the optimization of those Fourier coefficients. We first investigate the problem in CAE environment by constructing an optimization framework that integrates high-fidelity GT (Gamma Technology) POWER engine model and engine actuators’ Simulink model into ModeFrontier computation platform. We conduct simulation optimization study on two different turbocharged engines under this framework with evolutionary computation algorithms.
Technical Paper

The Use of Discrete Wavelet Transform in Road Loads Signals Compression

2009-10-06
2009-36-0238
Wavelets are a powerful mathematical tool used to multi-resolution time-frequency decomposition of signals, in order to analyze them in different scales and obtain different aspects of the information. Despite being a relatively new tool, wavelets have being applied in several areas of human knowledge, especially in signal processing, with emphasis in encoding and compression of image, video and audio. Based on a previous successful applications (FRAZIER, 1999) together a commitment to quality results, this paper evaluates the use of the Discrete Wavelet Transform (DWT) as an compression algorithm to reduce the amount of data collected in road load signals (load history) which are used by the durability engineering teams in the automotive industry.
Technical Paper

Stretch Flanging Formability Prediction and Shape Optimization

2006-04-03
2006-01-0351
Flanging is a secondary operation in sheet metal forming processes. Traditionally, the design of flange shape and trim line is based on an engineer's experience. It takes several iterations to achieve the desired flange geometry because of potential splits. In this paper, an efficient CAE-based tool is developed to quickly predict the formability of a given flange design and enable the optimization of trim lines. A numerical algorithm is formulated in this CAE tool to convert the 3D flanging process into an equivalent in-plane deformation problem. The developed CAE tool is also integrated with the optimization software LS-OPT for trim line design.
Technical Paper

Smart On-Street Parking System to Predict Parking Occupancy and Provide a Routing Strategy Using Cloud-Based Analytics

2017-03-28
2017-01-0087
It is estimated that up to 30% of traffic in cities is due to drivers searching for parking. Research suggests that drivers spend an average of 6-14 minutes looking for an available space in London. This increases individual stress levels as well as congestion and pollution. Parking Guidance Systems provide an effective way to reduce parking search time by presenting drivers with dynamic information on parking. An accurate prediction and recommendation analytics algorithm is the key part of the system combining real time cloud-based analytics and historical data trends that can be integrated into a smart parking user application. This paper develops a prediction algorithm based on transient queuing theory and Laplace transform to predict parking occupancy thus predicting open parking locations.
Technical Paper

Real-time Crash Detection and Its Application in Incident Reporting and Accident Reconstruction

2017-03-28
2017-01-1419
Characterizing or reconstructing incidents ranging from light to heavy crashes is one of the enablers for mobility solutions for fleet management, car-sharing, ride-hailing, insurance etc. While crashes involving airbag deployment are noticeable, light crashes without airbag deployment can be hidden and most drivers do not report these incidents. In this paper, we are using vehicle responses together with a dynamics model to trace back if abnormal forces have been applied to a vehicle so as to detect light crashes. The crash location around the perimeter of the vehicle, the direction of the crash force, and the severity of the crashes are all determined in real-time based on on-board sensor measurements which has further application in accident reconstruction. All of this information will be integrated to a feature called “Incident Report”, which enable reporting of minor accidents to the relevant entities such as insurance agencies, fleet managements, etc.
Technical Paper

Real-Time Coupling Coefficient Estimation for Inductive Power Transfer Systems

2017-03-28
2017-01-1608
Loosely coupled transformers are commonly used in inductive power transfer (IPT) systems which are inevitable part of electrified transportation. Since efficiency of these systems is mainly dependent on alignment of primary (ground side) and secondary (vehicle side) coils, estimation of coupling coefficient has a significant impact on the performance of IPT chargers. However, despite the requisite need for a plausible estimation algorithm, the lack of a simple, optimal and unsusceptible to noise algorithm is noticeable. In this paper, we introduce a new online optimal prediction method for IPT systems allowing a precise real time estimation of the coupling coefficient in the presence of measurement noises and system uncertainties. Using IPT system dynamics, the estimation scheme is proposed based on Kalman filter algorithm. This algorithm is optimal, tractable and robust and its estimation are promising as simulation results reveal.
Technical Paper

Rapid Prototyping of Control Strategies for Embedded Systems

1995-04-01
951197
As both the number and complexity of electronic control system applications on earthmoving equipment and on-highway trucks increase, so does the effort associated with developing and maintaining control strategies implemented in embedded systems. A new tool was recently introduced by Sigma Technology of Ann Arbor, Michigan, that provides the capability to perform rapid prototyping of production embedded systems. The rapid prototyping process includes system modeling, control algorithm synthesis, simulation analysis, source code generation and vehicle implementation. The results of incorporating this tool in the control system design process include improved control performance, improved system reliability/robustness, and significantly reduced development/maintenance costs.
Technical Paper

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

2024-04-09
2024-01-1980
The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems.
Technical Paper

Predictive Analytics in Automobile Industry: A Comparison between Artificial Intelligence and Econometrics

2017-03-28
2017-01-0238
This study compares the model efficacy of Neural Network and Vector Auto Regression. Further it also analyses the impact of predictors controlling for total industry volume. Understanding both the methodologies has their distinctive advantages and disadvantages. Our empirical findings indicate that based on the characteristics of data such as non-stationary, non-linearity and non-normality paves the way for use of machine learning algorithm relative to econometrics technique. Our results suggest that data type and its characteristics are more important in determining the methodology than the methodology itself. In industry, econometrics methodologies are widely used due to their usage simplicity and its ability to explain the relationships in simple terms.
Technical Paper

Practical Modeling and Simulation of Permanent Magnet Direct Current (PMDC) Motors

2003-03-03
2003-01-0089
Electrical Computer Aided Engineering (CAE) is necessary and useful for the automotive industry [1,2]. It provides the user with necessary information that helps him/her make faster and more certain design decisions. CAE facilitates for the user options and the means to locate and choose optimums [6]. It requires models that best represent the actual system while avoiding unnecessary numerical overhead. Therefore, it is necessary to build the mathematical model in a systematic way that captures dynamics of the actual system [3]. Also, an optimal solution for the system parameters is required to increase the accuracy of the model and to make a correct decision while designing, testing, and validating [3,6]. This paper studies the CAE analysis of a PMDC motor. It develops a systematic approach to model, simulate and analyze PMDC motors with robust output. It enhances the accuracy of PMDC to a 6-Sigma level.
Technical Paper

Personalized Driver Workload Estimation in Real-World Driving

2018-04-03
2018-01-0511
Drivers often engage in secondary in-vehicle activity that is not related to vehicle control. This may be functional and/or to relieve monotony. Regardless, drivers believe they can safely do so when their perceived workload is low. In this paper, we describe a data acquisition system and machine learning based algorithms to determine perceived workload. Data collected were from on-road driving in light and heavy traffic, and individual physiological measures were recorded while the driver also performed in-vehicle tasks. Initial results show how the workload function can be personalized to an individual, and what implications this may have for vehicle design.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
X