Refine Your Search

Topic

Author

Search Results

Technical Paper

Topology Optimisation of Brake Caliper

2020-10-05
2020-01-1620
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimisation algorithm is used to minimise the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys.
Technical Paper

The Performance of an Automobile Radiator with Aluminum Oxide Nanofluid as a Coolant—An Experimental Investigation

2022-02-17
2022-01-5007
The radiator as heat exchanger plays a very significant role in an engine cooling system by maintaining the coolant at an optimum temperature. The present study aims at improving the performance of an automobile radiator by using nano-coolants. Nano-scale particles have been tested and proven to have enhanced thermal conductivity than their bulk counterparts due to their increased surface area-to-volume ratio. Thus the nanoparticles dispersed in the base fluids called nanofluids are used as a radiator coolant to improve the performance of the radiator. Aluminum oxide (Al2O3)-based nanofluid at 0.04%, 0.08%, 0.15% by volume concentrations is used in two different base fluids, one being water and the other ethylene glycol (30%) (EG)-water mixture. Coolant is supplied at three different inlet temperatures at 40°C, 50°C, and 60°C and at five different flow rates ranging from 2 L/min to 6 L/min at an interval of 1 L/min.
Technical Paper

Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0146
In Additive manufacturing, Direct Metal Laser Sintering (DMLS) is a rapid manufacturing technique used for manufacturing of functional component. Finely powered metal is melted by using high-energy fiber laser, by Island principle strategy that produces mechanically and thermally stable metallic component with reduced stresses, thermal gradients and at high precision. Inconel is an austenitic chromium nickel-based superalloy often used in the applications which require high strength and temperature resistant. It can retain its properties at high temperature. An attempt is made to examine the effect of laser shot peening (LSP) on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. The surface roughness of the material has been increased due to the effect of laser shock pulse and ablative nature. Macro hardness increased to 13% on the surface.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Technical Paper

Performance Analysis of Organic Rankine Cycle (ORC) for Recovering Waste Heat from a Heavy Duty Diesel Engine

2015-01-14
2015-26-0037
The heat losses through exhaust gases and the engine coolant contribute significantly towards reduction in thermal efficiency of an Internal Combustion (IC) engine. This largely impacts the fuel economy and power output. Waste Heat Recovery (WHR) has proven to be an effective method of overcoming these challenges. A Rankine cycle is a reverse refrigeration cycle that circulates a working fluid through the four basic components namely the pump, evaporator, turbine and condenser. It is a popular WHR approach in automotive applications with varying levels of success in the past. As the heat transfer capability in organic working fluids is greater than the conventionally used inorganic fluids, the former is used to capture maximum waste heat from low grade heat sources such as the automobile engine. A dual-loop Organic Rankine Cycle (ORC) is proposed for a heavy duty IC Engine with working fluids R245fa and R236fa for the High Temperature (HT) and Low Temperature (LT) loops respectively.
Technical Paper

Numerical Analysis and Optimization of Heat Transfer for FSAE Radiator for Various Sidepod Designs

2023-11-10
2023-28-0055
Heat transfer optimization is a crucial aspect of the design process for Formula Student race cars, particularly for the radiator, usually housed in a side pod. For the car to operate at peak performance, a well-designed radiator-sidepod system is essential such that it can dissipate heat generated by the engine faster, for the car to run in optimal performance. Testing the car physically for various radiator-sidepod design iterations is a very difficult task, also considering the costs to manufacture the radiator-sidepod setup. The objective of this study is to develop a comprehensive methodology for analysing heat transfer through radiator setup using Computational Fluid Dynamics and to validate it through experimental investigations, to enhance performance and efficiency of the radiator setup. It further explains how to find out its heat transfer efficiency, and to choose the right radiator-sidepod setup, giving optimal performance.
Technical Paper

Noise Absorption Behavior of Aluminum Honeycomb Composite

2020-09-25
2020-28-0453
Natural fibers are one of the major ways to improve environmental pollution. In this study experimental investigation and simulation of honeycomb filled with cotton fabric, wood dust and polyurethane were carried out. This study determines the potential use of cotton fabric, wood dust as good sound absorbers. Automotive industries are looking forward to materials that have good acoustic properties, lightweight, strong and economical. This study provides a better understanding of sound-absorbing material with other mechanical properties. With simulation and experimental results, validation of works provides a wider industrial application for the interior of automotive industries including marine, aviation, railway industry and many more.
Technical Paper

Modeling and Analysis of Motorcycle Assembly for Dynamic Investigation

2023-11-10
2023-28-0117
“The purpose of this study is to explore the structural behavior of motorcycle frames that are fabricated from metals such as steel and aluminum, and that are welded together to generate beams. The components of the wheel, handlebar, and saddle are assembled together to form the chassis of the bicycle. For the purpose of determining modal characteristics such natural frequencies and mode shapes, two different analytical approaches, namely finite element analysis (FEA) and experimental modal analysis (EMA), were utilized. The framework of the chassis was design in 3D using CAD software to carry out the FEA, and after specifying the meshing type and material parameters, normal mode analysis was carried out. To contrast modal characteristics with FEA results, EMA utilized impact hammer testing with a roving accelerometer approach.
Technical Paper

Methodology Development for External Aerodynamic Evaluation of a Bus and Its Impact on Fuel Economy along with Experimental Validation

2019-01-09
2019-26-0294
The objective of this study is to develop, demonstrate and validate the methodology of external aerodynamic analysis of a State Road Transport bus for prediction of drag coefficient and its impact on fuel consumption with experimental validation. It has been verified that vehicle consumes around 40% of the available engine power to overcome the air drag. This gives us a huge scope to study the effect of aerodynamic drag. Baseline model of State Road Transport Bus was evaluated for estimating fuel consumption using Computational Fluid dynamics (CFD) methodology. The CFD results were validated with the experimental data with less than 10% deviation. Bus design was optimized with an objective of reducing the fuel consumption with parameters like angle of windshield, rounding and tapering corners and rear draft angle. Optimized bus design is also ensured to meet functional specifications as per AIS052.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

2019-10-11
2019-28-0152
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal.
Technical Paper

Implementation of Reconfigurable Manufacturing Systems in the Manufacturing of Turbo Charger Turbine Housing

2019-10-11
2019-28-0135
Today manufacturing industries have become more competitive and to survive, industries should be capable of accommodating the sudden market change. The conventional manufacturing systems like Dedicated Manufacturing Lines (DMLs) can produce high volume of product but difficult to cater to varying product types. On the other hand, Flexible Manufacturing System (FMS) is capable of handling product variety but not suited for mass production, The Reconfigurable Manufacturing System (RMS) gives the advantage of both the system, as it has the capability to adjust to both high volume requirement and product variety, and it able to upgrade to new process technology with minimal effort. In this work the reconfiguration is carried out in machine and system level. At machine level, a new inspection machine is proposed which can be used for multiple products with minimal adjustments and a special drilling and bore tool is suggested to reduce the cycle time and ramp up time when product changes.
Technical Paper

Fabrication and Machinability Study of Al2219 Metal Matrix Composites Reinforced with SiN/MoS2 Nanoparticles

2019-10-11
2019-28-0170
Composites materials are substituting constituents for traditional materials due to their remarkable properties, and the addition of nanoparticles gives a new development in the material domain. The nanoparticles influence on fabrication and machinability investigation study is essential as the composites to be used in applications like automotive and aerospace. The current study investigates the machinability characteristics of Al2219 based metal composites reinforced with nanoparticles of SiN/MoS2. Al2219- reinforcements (SiN and MoS2) composites are fabricated by the method of stir casting. Four different compositions (Al2219/SiN (2 wt% and 4 wt%), , Al2219/2 wt.% SiN/ 2 wt.% MoS2, Al2219/2 wt.% MoS2) are fabricated by varying the different weight percentages of nanoparticles reinforcements. An attempt is made to study the investigation analysis of force, surface roughness, and tool wear using CNC machine lathe to consider the effect of cutting speed, cutting depth, and samples.
Technical Paper

Experimental Investigations on Lean Burn Spark Ignition Engine Using Methanol - Gasoline Blends

2019-01-09
2019-26-0088
The present study discusses the effects of engine combustion, performance and emission features of methanol-gasoline blend fired lean burn Spark Ignition (SI) engine. Performance features such as Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), tail pipe emissions namely Hydrocarbon (HC), Carbon Monoxide (CO), Nitrogen Oxide (NO), Carbon di Oxide (CO2) and combustion characteristics viz. in-cylinder pressure, Heat Release Rate (HRR), Cumulative Heat Release (CHR) and variation of mean effective pressure were measured and compared with that of neat gasoline. Experiments were conducted on a modified sole cylinder four-stroke compression engine (Kirloskar TAF1) to operate as SI engine with a compression ratio of 10.5:1. A new manifold injection system and ignition system were developed by replacing the fuel injection pump and injector.
Technical Paper

Experimental Investigation on Turning Characteristics of TiC/MoS2 Nanoparticles Reinforced Al7075 Using TiN Coated Cutting Tool

2019-10-11
2019-28-0165
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its excellent tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle has been studied. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate.
Technical Paper

Experimental Analysis of Surface Morphology of Commercial Fuel Filter with Oxygenated Fuels

2017-07-10
2017-28-1957
Oxygenated fuels like biodiesel and ethanol possess prominent characteristics as an alternative fuel for diesel engines. However, these fuels are corrosive in nature and hygroscopic. This might results in material incompatibility with the fuel supply system of an automobile. The filter consists of a filter membrane that that traps the contaminants from the fuel and prevents them from entering into the combustion chamber. The operational hours of the filter membrane depend on the quality of fuel employed. The conventional filter is designed for fossil diesel operation and hence the filter life might degrade earlier in the case of oxygenated fuels like biodiesel or ethanol. The proposed work focuses on the impact of oxygenated fuels, viz. karanja and ethanol blended karanja biodiesel on the filter membrane and its flow characteristics. Two tests, pressure difference and contaminant retention test are carried out in accordance with Japanese standard D1617:1998.
Technical Paper

Effect of Cryogenic Treatment on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0140
The main purpose of this study is to investigate additive manufactured Inconel super alloy subjected to cryogenic treatment (CT). Cryogenic treatment is mainly used in aerospace, defense and automobile application. Direct metal laser sintering is an additive manufacturing technique used for manufacturing of complex and complicated functional components. Inconel is an austenitic chromium nickel based super alloy often used in the applications which require high strength & temperature resistant. In this work, a study is carried out on microstructure and mechanical properties of additive manufactured Inconel 718 when subjected to cryogenic treatment at three different time intervals. The micro-structural evolution of IN718 super-alloy before and after CT was investigated by both optic microscope and scanning electron microscope. Surface roughness and hardness at different CT time intervals has also analyzed. Additionally, XRD technique was used to analyze the surface residual stress.
Technical Paper

Design of a Novel Electro-Pneumatic Gear Shift System for a Sequential Gearbox

2019-10-11
2019-28-0011
This paper describes the design of a novel pneumatic gear shifting system to replace the existing gear stick manual shifting system for ease of the driver while shifting gears. The aim of this work is to have a semi-automatic shifting (pneumatic shifting) removing the need for the driver clutch operation. The system consists of a solenoid valve, CO2 gas-pressurized cylinder, double-acting cylinder, and single-acting cylinder. On basis of the signal received the gear needs to be changed, the shifter opens or closes a magnetic valve assembly. The solenoid valve allows the compressed air into the piston that comes from a pressurized cylinder, in order to create the effect of shifting gears. The pedal shifter and buttons are used to shift the gears. The pedal shifter was designed by using a 3-D printing technique using PLA material. The microcontroller used is ATMEGA-328 in this system. There are three switches, one for upshift, downshift, and clutch respectively.
X