Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Computational Analysis of Pitch Sensitivity for a Concept Race Car

2022-10-06
2022-01-5065
The present numerical study investigates the design and analysis of a concept model Le Mans Grand Touring Prototype (LMGTP) car. Through analysis, aerodynamic pitch sensitivity and related factors are found to be detrimental to the straight-line stability of these high-speed race cars. Simulations are carried out on a commercial Computational Fluid Dynamics (CFD) tool for varying pitch angles of the car from −1° to +2.5°. For each pitch angle, steady-state pressure contours, velocity contours, and streamlines are presented. Additionally, coefficients and force values of lift and drag are calculated with the k-omega turbulence model implemented. Obtained numerical results are validated via Ahmed Body studies reported in the literature, and an average error deviation of 1.013% is exhibited. It is observed that lift force at the front axle increases with increasing pitch angles, leading to reduced pitch stability.
X