Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Fault Assumptions in Distributed Integrated Architectures

2007-09-17
2007-01-3798
Distributed integrated architectures in the automotive and avionic domain result in hardware cost reduction, dependability improvements, and improved coordination between application subsystems compared to federated systems. In order to support safety-critical application subsystems, a distributed integrated architecture needs to support fault-tolerance strategies that enable the continued operation of the system in the presence of failures. The basis for the implementation and validation of fault-tolerance strategies are realistic fault assumptions, which are captured in a fault hypothesis. This paper describes a fault hypothesis for distributed integrated architectures, which takes into account the sharing of the communication and computational resources of a single distributed computer system among multiple application subsystems. Each node computer serves for the execution of multiple jobs.
Technical Paper

Predicted Device-Degradation Failure-Rate

2015-09-15
2015-01-2555
There is a concern that the continuing trend on miniaturization (Moore's law) in IC design and fabrication might have a negative impact on the device reliability. To understand and to possibly quantify the physics underlying this concern and phenomenon, it is natural to proceed from the experimental bathtub curve (BTC) - reliability “passport” of the device. This curve reflects the combined effect of two major irreversible governing processes: statistics-related mass-production process that results in a decreasing failure rate with time, and reliability-physics-related degradation (aging) process that leads to an increasing failure rate. It is the latter process that is of major concern of a device designer and manufacturer. The statistical process can be evaluated theoretically, using a rather simple predictive model.
X