Refine Your Search

Topic

Search Results

Technical Paper

Test Strategy for Linux based Platforms using Open Source Tools

2016-04-05
2016-01-0053
Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
Technical Paper

Target Tracking by a Single Camera Based on Range-Window Algorithm and Pattern Matching

2006-04-03
2006-01-0140
An algorithm, which determines the range of a preceding vehicle by a single image, had been proposed. It uses a “Range-Window Algorithm”. Here in order to realize higher robustness and stability, the pattern matching is incorporated into the algorithm. A single camera system using this algorithm has an advantage over the high cost of stereo cameras, millimeter wave radar and non-robust mechanical scanning in some laser radars. And it also provides lateral position of the vehicle. The algorithm uses several portions of a captured image, namely windows. Each window is corresponding to a predetermined range and has the fixed physical width and height. In each window, the size and position of objects in the image are estimated through the ratio between the widths of the objects and the window, and a score is given to each object. The object having the highest score is determined as the best object. The range of the window corresponding to the best object becomes an estimated range.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

Occupant Knee Impact Simulations: A Parametric Study

2003-03-03
2003-01-1168
Occupant knee impact simulations are performed in the automotive industry as an integrated design process during the course of instrument panel (IP) development. All major automakers have different categories of dynamic testing methods as part of their design process in validating their designs against the FMVSS 208 requirement. This has given rise to a corresponding number of knee impact simulations performed at various stages of product development. This paper investigates the advantages and disadvantages of various types of these knee impact simulations. Only the knee load requirement portion of the FMVSS208 is considered in this paper.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

MBT Timing Detection and its Closed-Loop Control Using In-Cylinder Ionization Signal

2004-10-25
2004-01-2976
Maximum Brake Torque (MBT) timing for an internal combustion engine is the minimum advance of spark timing for best torque. Traditionally, MBT timing is an open loop feedforward control whose values are experimentally determined by conducting spark sweeps at different speed, load points and at different environmental operating conditions. Almost every calibration point needs a spark sweep to see if the engine can be operated at the MBT timing condition. If not, a certain degree of safety margin is needed to avoid pre-ignition or knock during engine operation. Open-loop spark mapping usually requires a tremendous amount of effort and time to achieve a satisfactory calibration. This paper shows that MBT timing can be achieved by regulating a composite feedback measure derived from the in-cylinder ionization signal referenced to a top dead center crank angle position. A PI (proportional and integral) controller is used to illustrate closed-loop control of MBT timing.
Technical Paper

Integrate Structural Optimization into Upfront Carbon Canister Component Design Process

2005-04-11
2005-01-1066
An effort to integrate a structural optimization process into the carbon canister bracket design is presented to demonstrate the benefits of an upfront Computer-Aided Engineering (CAE) driven design. Structural optimization methods - including topology, shape, and size optimization - are used to develop the injection molded plastic carbon canister bracket. Furthermore, the incorporation of the Knowledge Base Engineering (KBE) features in the design process not only accelerates the design process but also ease manufacturing feasibility. Even though topology optimization has been widely used to explore the initial topological designs of different products, it is still a great challenge to explore shell like structure designs with 3D solid design package spaces using topology optimization method.
Technical Paper

Improved Hydraulic Power Steering Pump Design Using Computer Tools

2005-04-11
2005-01-1269
A hydraulic steering pump system will be considered in this report. The objective is to improve the design of a specific power steering pump using computational fluid dynamics (CFD) tools. The first part of this report deals with a pump oil seal leak. The thermal and fluid environments have been simulated. A variable fluid viscosity is used, showing a 15-20% increase in peak temperature. Potential improvements in product design have been suggested. The second part deals with using computer tools to reduce redundant testing. This includes use of parametric approach towards optimization. A rotating grid approach (basic moving mesh technique) is used.
Technical Paper

GENPAD® - Ergonomic Packaging

2002-03-04
2002-01-1241
GENPAD® is a knowledge-based, three-dimensional modeling computer tool developed by Visteon to create occupant-friendly interiors. GENPAD quickly and easily produces zones to evaluate ergonomic aspects of vehicle interiors such as reach, clearance, vision, and reflection. These zones are produced from automated design studies based on experience and engineering standards accepted by the automotive industry. Without GENPAD, a single study requires an experienced engineer 4-6 hours to complete. Multiple studies require several engineers weeks to perform. The methods used are also error-prone due to complex instructions. To overcome these challenges, GENPAD provides over 50 ergonomic packaging studies that produce accurate results in minutes, not weeks, every time.
Technical Paper

Development of a Canning Method for Catalytic Converters using Ultra Thin Wall Substrates

2004-03-08
2004-01-0144
There are benefits of using ultra thin wall (UTW) substrates (i.e., 900/2, 400/4, etc) in lowering cost and emission level. However, the more fragile mechanical characteristics of the UTW present a challenge to design and manufacture of robust catalytic converters. This paper describes a method of canning trial, where a combined Design of Experiment / Monte-Carlo analysis method was used, to develop and validate a canning method for ultra thin wall substrates. Canning trials were conducted in two stages-- Prototype Canning Trial and Production Canning Trial. In Prototype Canning Trial, the root cause of substrate failure was identified and a model for predicting substrate failure was established. Key factors affecting scrap rate and gap capability were identified and predictions were performed on scrap rate and gap capability with the allowed variations in the key factors. The results provided guidelines in designing production line and process control.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

2003-03-03
2003-01-0139
Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).
Technical Paper

Development and Implementation of a Tool for Modeling Driveline Systems

2000-12-04
2000-01-3525
In order to facilitate the modeling of vehicle drivelines in ADAMS, an ADAMS/View driveline tool was developed with the aid of Mechanical Dynamics, Inc (MDI). Known as Visteon Axle & Driveline Simulation-Dynamics (VADSIM-DYNA) this tool is used to supply customers with driveline models for use in their full vehicle modeling as well as for predicting forces in the driveline. Of specific interest is a method for calculating the mesh point of a hypoid gear set using the geometry of the ring and pinion gears, and a custom force statement for calculation of the mesh point reactions at the center of gravity for both the pinion and ring gears. With the introduction of ADAMS/Driveline, The comapny has worked with MDI to implement VADSIM-DYNA into the base product. With the aid of VADSIM-DYNA the ability to provide customers with ADAMS models of driveline components and systems has been greatly enhanced.
Technical Paper

Designing a Tuned Torsional Damper for Automotive Applications Using FEA and Optimization

2005-05-16
2005-01-2293
Tuned mass dampers are frequently used in vehicles to resolve vibration issues arising from problematic torsional modes. The design of a tuned damper is straightforward, but evaluating its effect on other system modes is time consuming. An upfront design tool will accelerate the process of designing and evaluating the damper's affect on system level dynamic characteristics. Computer aided engineering tools have been developed to design a tuned torsional damper using two different approaches. In the first approach, a two-degree of freedom torsional system model is utilized. In the second approach, a detailed finite element model of a driveline system is considered. In the second approach, the effect of the damper to the vehicle driveline system response at the hypoid pinion nose and other desired locations is studied to assess the effectiveness of the damper design. In both approaches, the damper rotational inertia is considered as a design variable.
Technical Paper

Design Review a Tool for Product Development Quality Assurance

2003-11-18
2003-01-3670
Same of the more enticing and productive opportunities to a useful work in product assurance are those of influencing the design of a product. The primary concern of design assurance is preventing or correcting those design errors that lead to poor product integrity. One of the tools used by the development teams in many organizations is the Design Review. The impact in cost and quality is directly affected by the correct utilization of the tool.
Technical Paper

Control Software Interface for Managing System Requirements

2004-03-08
2004-01-0363
Not all software tools are created equal and not all software tools are created to perform the same tasks. Therefore, different software tools are used to perform different tasks. However, being able to share the information between the different software tools, without having to manually re-enter (duplicate) any of the information, can save a lot of time and improve the quality of the product. The control software interface presented in this paper, allows system engineers to exchange data between software tools in an efficient manner which maximizes each tools capabilities and ultimately reduces development time and improves the quality of the product.
Technical Paper

Combining CAE and Experimental Techniques to Develop Optimal Defrost / Demist Performance in a Vehicle

2004-03-08
2004-01-1506
Customer clinics and surveys have revealed the increased importance to the customer of good defrost and demist performance in their vehicle. Achieving this level of performance, within the time and cost constraints of a modern vehicle development program, places increased reliance on computational (CAE) techniques. However, this paper describes how the optimum development process should be to combine this reliance upon CAE methods with a newly developed experimental technique. This new laser Doppler velocimetry (LDV) based methodology is employed at all stages of the development process and complements the CAE techniques perfectly. The end result is optimized airflow management within the vehicle cabin – essential if good defrost and demist performance is to be achieved in a vehicle.
Technical Paper

Broadband Noise Source Models as Aeroacoustic Tools in Designing Low NVH HVAC Ducts

2006-04-03
2006-01-1192
Computational Fluid Dynamics (CFD) is an integral part of product development at Visteon Climate Systems with a validated set of CFD tools for airflow and thermal management processes. As we increasingly build CAE capabilities to design not only thermal comfort, but quiet systems, developing noise prediction capabilities becomes a high priority. Two Broadband Noise Source (BNS) models will be presented, namely Proudman's model for quadrupole source and Curle's boundary layer model for dipole source. Both models are derived from Lighthill's acoustic analogy which is based on the Navier-Stokes equations. BNS models provide aeroacoustic tools that are effective in screening air handling systems with higher noise levels and identifying components or surfaces that generate most of the noise, hence providing opportunities for early design changes. In this paper, BNS models were used as aeroacoustic design tools to redesign an automotive HVAC center duct with high levels of NVH.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
X