Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Non-intrusive Temperature Measurements during the Compression Phase of a DI Diesel Engine

1995-10-01
952461
Non-intrusive temperature measurements based on single-line laser-induced fluorescence of molecular oxygen in the transparent IDEA Diesel engine were investigated. Oxygen molecules were excited to fluorescence with a narrowband, tunable ArF excimer laser at 193 nm. The resulting fluorescence signals were recorded with an image-intensified CCD camera. The temperature increase during the compression phase of the four-cylinder direct injection Diesel engine could be evaluated from the LIF signals. In the crank angle range of the measurements, good agreement between measured and calculated temperatures (polytropic compression) was observed.
Technical Paper

In Cylinder High Speed and Stroboscopic Video Observation of Spray Development in a DI Diesel Engine

1996-05-01
961206
For high-speed imaging a newly developed eight-fold CCD camera, which permits framing rates of up to one million pictures per second, was used to obtain pictures of the injected sprays during the operation of a diesel engine. For the particular case studied here the framing rate was set at 50,000 pictures per second. This rate was sufficient to resolve the temporal development of the sprays in the transparent version of the four-cylinder, in-line, 1.9 litre DI production diesel engine of Volkswagen. The advantage of the camera is that it needs no light pulses for illumination, but can operate with a continuous light source. Each of the CCD chips is arranged around a central eight face reflecting pyramid, which splits the light coming from the camera lens to each CCD chip. The chips can be shuttered freely (asynchronously) at programmable inter-frame spacings thus permitting operation with continuous illumination. In this particular case a 30 Watt halogen lamp was used.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
X