Refine Your Search

Topic

Search Results

Technical Paper

Volvo's MEP and PCP Engines: Combining Environmental Benefit with High Performance

1991-01-01
910010
In two research programs, Volvo has investigated high performance turbocharged versions based on the new 3-litre inline six-cylinder naturally aspirated engine. Power and torque targets were 180 kW and 385 Nm respectively, with a wide usable torque range. The MEP-(Methanol Environment Performance)-project was linked to alternative fuel studies and focused on methanol (M85) and Flexible Fuel Vehicle-(FFV)-development. With alternative fuels, it is important to investigate not only the emissions and fuel efficiency, but also the performance potential, in particular when used in turbocharged engines. The MEP-engine could be reduced to 2.5 litre displacement, due to the good specific performance with M85 fuel. Higher charge pressures could be used compared to gasoline. An M85 turbocharged high performance engine must be designed for higher peak combustion pressures.
Technical Paper

Volvo LCP 2000 Light Component Project

1985-02-01
850570
Each year Volvo Car Corporation invests about 10 per cent of its turnover in product development. One tenth of this amount is reserved for advanced research projects, or high risk projects. Volvo LCP (Light Component Project) 2000 is one of these projects and a preparation in technology and competence for the year 2000. In addition to broad theoretical know-how concerning new materials, alternative drive lines, new production methods, etc, the LCP study has resulted in four road-going experimental cars. The project which started in mid 1979 was presented to the public in October 1983 after a year's testing and evaluation of the car, its sub-systems and design solutions. This paper is a description of the project work. Another paper ‘Magnesium in the Volvo LCP 2000’, deals more specifically with the results of the LCP material studies.
Technical Paper

Understanding the CCVS Stratified EGR Combustion System

1996-02-01
960837
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a port injected four-valve gasoline engine. This system, known as Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at a stoichiometric air/fuel ratio. Both burnrate (10-90% burn angle) and HC emissions are almost completely insensitive to EGR up to best economy EGR rate. Cycle to cycle combustion variation is also excellent with a coefficient of variation of IMEP of less than 2% at best economy EGR rate. This paper describes a research programme aimed at gaining a better understanding of the in-cylinder processes in this combustion system.
Technical Paper

Supervisory Controller for a Light Duty Diesel Engine with an LNT-SCR After-Treatment System

2018-09-10
2018-01-1767
Look ahead information can be used to improve the powertrain’s fuel consumption while efficiently controlling exhaust emissions. A passenger car propelled by a Euro 6d capable diesel engine is studied. In the conventional approach, the diesel powertrain subsystem control is rule based. It uses no information of future load requests but is operated with the objective of low engine out exhaust emission species until the Exhaust After-Treatment System (EATS) light off has occurred, even if fuel economy is compromised greatly. Upon EATS light off, the engine is operated more fuel efficiently since the EATS system is able to treat emissions effectively. This paper presents a supervisory control structure with the intended purpose to operate the complete powertrain using a minimum of fuel while improving the robustness of exhaust emissions.
Technical Paper

Stone Impact Damage to Automotive Paint Finishes: Impact Induced Corrosion in Painted Pre-Coated Sheet Steels

1993-10-01
932332
Electrochemical Impedance Spectroscopy (EIS) and Thermal Wave Imaging (TWI) are complementary techniques which can be used to detect and estimate Impact Induced Corrosion (IIC) at the metal-polymer interface. This paper describes the use of the above techniques to detect Impact Induced Corrosion in a variety of pre-coated and painted sheet steels. It has been possible to show, that IIC is a threshold phenomenon and depends on the type of galvanized coating. Evaluation of IIC, using a high performance indoor accelerated test and preliminary data from the proving grounds are presented in this paper.
Technical Paper

Numerical Study of Brake Disc Cooling Accounting for Both Aerodynamic Drag Force and Cooling Efficiency

2001-03-05
2001-01-0948
This paper reports how numerical simulation can be used as a tool to guide vehicle design with respect to brake cooling demands. Detailed simulations of different brake cooling concepts are compared with experimental results. The paper consists of two parts. The first part places the emphasis on how to model the flow inside and around the brake disc. The boundary layer and the pumping effect is investigated for a ventilated single rotor. The numerical results will be compared to experimental results. In the second part, an engineering approach is applied in order to rank different technical solutions on a Volvo S80 vehicle in terms of brake cooling and aerodynamic drag. The results from the free brake disc simulations indicate that the tangential velocity can be predicted with high accuracy, e.g. standard k-ε model with prism near wall cells typically within 4% of measured data.
Technical Paper

Methane and Nitric Oxide Conversion Over a Catalyst Dedicated for Natural Gas Vehicles

2000-10-16
2000-01-2928
Methane and nitric oxide conversion was studied over a Pd-based catalyst at steady state conditions. The gas mixture contained methane (0.125 %), Nitric oxide (0.125 %), carbon monoxide (0.7 %), oxygen and argon as carrier gas. The experiments were performed in a well-stirred reactor (Berty reactor) which provided constant gas composition over the catalyst. Lambda scans from λ=1.01 to 0.99 and back performed by varying the oxygen content, revealed a hysteresis in both the methane conversion and the nitric oxide conversion. The temperature and presence of nitric oxide affected the hysteresis. Complementary experiments in a synthetic exhaust gas rig revealed a more pronounced hysteresis in the presence of carbon dioxide and water. An attempt to model the hysteresis effect as a function of the palladium and palladium-oxide transformations was made.
Technical Paper

Measurements of Fuel Film Thickness in the Inlet Port of an S.I. Engine by Laser Induced Fluorescence

1995-10-01
952483
Fuel wetting in the inlet port of a gasoline engine was studied using Laser-Induced Fluorescence (LIF). The measurements were done directly on the metal wall surface. Quantitative results were be obtained using a special calibration procedure. The sensitivity of the technique was found to correspond to a fuel layer thickness in the order of 1 μm, and the accuracy was estimated to be approx. 10 %. The engine was run on iso-octane, and in order to obtain fluorescence a dopant (3-pentanone) was added to the fuel. Laser light with a wave length of 266 nm was generated by frequency doubling the light from a Nd-YAG laser in two steps. A laser sheet was directed into the intake port and the fuel layer on the wall could be studied along a line on the bifurcation wall. The fluorescence light was detected with an intensified diode-array camera. The measurements from the fuel film thickness were compared with measurements of the total fuel film mass using an A/F response method.
Journal Article

Investigation of Wheel Aerodynamic Resistance of Passenger Cars

2014-04-01
2014-01-0606
There are a number of numerical and experimental studies of the aerodynamic performance of wheels that have been published. They show that wheels and wheel-housing flows are responsible for a substantial part of the total aerodynamic drag on passenger vehicles. Previous investigations have also shown that aerodynamic resistance moment acting on rotating wheels, sometimes referred to as ventilation resistance or ventilation torque is a significant contributor to the total aerodynamic resistance of the vehicle; therefore it should not be neglected when designing the wheel-housing area. This work presents a numerical study of the wheel ventilation resistance moment and factors that affect it, using computational fluid dynamics (CFD). It is demonstrated how pressure and shear forces acting on different rotating parts of the wheel affect the ventilation torque. It is also shown how a simple change of rim design can lead to a significant decrease in power consumption of the vehicle.
Technical Paper

Interference between Engine Bay Flow and External Aerodynamics of Road Vehicles

2010-04-12
2010-01-0288
This study focus on the aerodynamic influence of the engine bay packaging, with special emphasis on the density of packaging and its effect on cooling and exterior flow. For the study, numerical and experimental methods where combined to exploit the advantages of each method. The geometry used for the study was a model of Volvo S60 sedan type passenger car, carrying a detailed representation of the cooling package, engine bay and underbody area. In the study it was found that there is an influence on the exterior aerodynamics of the vehicle with respect to the packaging of the engine bay. Furthermore, it is shown that by evacuating a large amount of the cooling air through the wheel houses a reduction in drag can be achieved.
Technical Paper

Homogeneous Lean Combustion in a 2lt Gasoline Direct Injected Engine with an Enhanced Turbo Charging System

2018-09-10
2018-01-1670
In the quest for a highly efficient, low emission and affordable source of passenger car propulsion system, meeting future demands for sustainable mobility, the concept of homogeneous lean combustion (HLC) in a spark ignited (SI) multi-cylinder engine has been investigated. An attempt has been made to utilize the concept of HLC in a downsized multi-cylinder production engine producing up to 22 bar BMEP in load. The focus was to cover as much as possible of the real driving operational region, to improve fuel consumption and tailpipe emissions. A standard Volvo two litre four-cylinder gasoline direct injected engine operating on commercial 95 RON gasoline fuel was equipped with an advanced two stage turbo charger system, consisting of a variable nozzle turbine turbo high-pressure stage and a wastegate turbo low-pressure stage. The turbo system was specifically designed to meet the high demands on air mass flow when running lean on higher load and speeds.
Technical Paper

Galvanically Induced Atmospheric Corrosion on Magnesium Alloys: A Designed Experiment Evaluated by Extreme Value Statistics and Conventional Techniques

1997-02-24
970328
Galvanic corrosion of high purity die cast magnesium alloys AM50 and AZ91 was examined in accelerated atmospheric corrosion testing according to Volvo STD 1027,1375 for 6 weeks involving cycling of the relative humidity between 90% and 45% in combination with intermittent immersion in one of two NaCl-solutions (0.3% or 1.0%). The exposures were performed at two different CO2 levels; 0.01% and 0.3%. The initial general corrosion rate of the AM50 alloy is 50-100% higher than that of AZ91 depending on surface preparation. The corrosion weight loss of both materials depends linearly on salt load in the investigated range. CO2 has a moderate accelerating effect, being higher with decreased salt load. Extreme value analysis was used to evaluate the deepest pit distribution around the perimeter of mounted bolts in panels of AZ91 and AM50. Quite contrary to the general corrosion results, AZ91 showed 30% deeper pits than AM50.
Technical Paper

Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions

2010-04-12
2010-01-0755
Automotive wind tunnel testing is a key element in the development of the aerodynamics of road vehicles. Continuous advancements are made in order to decrease the differences between actual on-road conditions and wind tunnel test properties and the importance of ground simulation with relative motion of the ground and rotating wheels has been the topic of several studies. This work presents a study on the effect of active ground simulation, using moving ground and rotating wheels, on the aerodynamic coefficients on a passenger car in yawed conditions. Most of the published studies on the effects of ground simulation cover only zero yaw conditions and only a few earlier investigations covering ground simulation during yaw were found in the existing literature and all considered simplified models. To further investigate this, a study on a full size sedan type vehicle of production status was performed in the Volvo Aerodynamic Wind Tunnel.
Technical Paper

Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV

2014-04-01
2014-01-0602
Under a global impulse for less man-made emissions, the automotive manufacturers search for innovative methods to reduce the fuel consumption and hence the CO2-emissions. Aerodynamics has great potential to aid the emission reduction since aerodynamic drag is an important parameter in the overall driving resistance force. As vehicles are considered bluff bodies, the main drag source is pressure drag, caused by the difference between front and rear pressure. Therefore increasing the base pressure is a key parameter to reduce the aerodynamic drag. From previous research on small-scale and full-scale vehicles, rear-end extensions are known to have a positive effect on the base pressure, enhancing pressure recovery and reducing the wake area. This paper investigates the effect of several parameters of these extensions on the forces, on the surface pressures of an SUV in the Volvo Cars Aerodynamic Wind Tunnel and compares them with numerical results.
Technical Paper

Development Experience of a Multi-Cylinder CCVS Engine

1995-02-01
950165
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a multi-cylinder port injected four-valve gasoline engine. This system, dubbed Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at stoichiometric conditions whilst retaining ULEV compatible engine-out NOx and HC emission levels. A production feasible variable air motion system has also been assessed which enables stratification at part load with no loss of performance or refinement at full load.
Technical Paper

Deterioration of Three-Way Automotive Catalysts, Part II - Oxygen Storage Capacity at Exhaust Conditions

1993-03-01
930944
Catalysts aged under different on-road conditions were analysed with respect to their conversion of CO and HC at step changes of the synthetic exhaust gas composition. Time resolved diode laser spectroscopy and fast response FID analysis were used to characterise the catalyst response to transient changes of CO and hydrocarbons in the exhaust gas. The oxygen storage capacity was monitored at various conditions; flow rate, catalyst temperature, previous exposure to oxidizing or reducing atmosphere and amplitude of the perturbation. The technique appeared to provide a sensitive probe for analysis of the dynamic oxygen storage capacity of new and aged catalysts at exhaust like conditions. The results correlate well with the transient emission performance during vehicle tests. Further, surface characterization using SEM/EDS and XPS techniques indicated that phosphate formation was the most probable cause of deactivation.
Technical Paper

Cyclic Variation in an SI Engine Due to the Random Motion of the Flame Kernel

1996-05-01
961152
This paper reports an investigation of the association between flame kernel movement and cyclic variability and assesses the relative importance of this phenomenon, with all other parameters that show a cyclic variability held constant. The flame is assumed to be subjected to a “random walk” by the fluctuating velocity component of the flow field as long as it is of the order of or smaller than the integral scale. However, the mean velocity also imposes prefered convection directions on the flame kernel motion. Two-point LDA (Laser Doppler Anemometry) measurements of mean velocity, turbulence intensity and integral length scale are used as input data to the simulations. A quasi-dimensional computer code with a moving flame center position is used to simulate the influence of these two components on the performance of an S I engine with a tumble-based combustion system.
Journal Article

Automated Aerodynamic Vehicle Shape Optimization Using Neural Networks and Evolutionary Optimization

2015-04-14
2015-01-1548
The foremost aim of the work presented in this paper is to improve fuel economy and decrease CO2 emissions by reducing the aerodynamic drag of passenger vehicles. In vehicle development, computer aided engineering (CAE) methods have become a development driver tool rather than a design assessment tool. Exploring and developing the capabilities of current CAE tools is therefore of great importance. An efficient method for vehicle shape optimization has been developed using recent years' advancements in neural networks and evolutionary optimization. The proposed method requires the definition of design variables as the only manual work. The optimization is performed on a solver approximation instead of the real solver, which considerably reduces computation time. A database is generated from simulations of sampled configurations within the pre-defined design space. The database is used to train an artificial neural network which acts as an approximation to the simulations.
Technical Paper

A Wind Tunnel Study Correlating the Aerodynamic Effect of Cooling Flows for Full and Reduced Scale Models of a Passenger Car

2010-04-12
2010-01-0759
In the early stages of an aerodynamic development programme of a road vehicle it is common to use wind tunnel scale models. The obvious reasons for using scale models are that they are less costly to build and model scale wind tunnels are relatively inexpensive to operate. It is therefore desirable for model scale testing to be utilized even more than it is today. This however, requires that the scale models are highly detailed and that the results correlate with those of the full size vehicle. This paper presents a correlation study that was carried out in the Chalmers and Volvo Car Aerodynamic Wind Tunnels. The aim of the study was to investigate how successfully a correlation of the cooling air flow between a detailed scale model and a real full size vehicle could be achieved. Results show limited correlation on absolute global aerodynamic loads, but relative good correlation in drag and lift increments.
X