Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal and Chemical Deactivation of Three-Way Catalysts: Comparison of Road-, Fuel-Cut and SAI- Aged Catalysts

2015-04-14
2015-01-1000
The objective of this study was to investigate which of the artificial aging cycles available in the automotive industry that causes major deactivation of three-way catalysts (TWCs) and can be used to obtain an aged catalyst similar to the road aged converter (160 000km). Standard bench cycle (SBC) aging with secondary air injection (SAI) covered aging with various mass flows - a flow from three cylinders into one catalyst system and a flow from three cylinders into two parallel connected catalysts. For rapid catalyst bench aging, secondary air injection is a very efficient tool to create exotherms. Furthermore, the effect on catalytic activity of SAI aging with poisons from oil and fuel dopants (P, Ca, Zn) was investigated. The catalysts were thoroughly characterized in light-off and oxygen storage capacity measurements, emission conversion as a function of lambda and load variation was determined.
Journal Article

The Effect of Tumble Flow on Efficiency for a Direct Injected Turbocharged Downsized Gasoline Engine

2011-09-11
2011-24-0054
Direct gasoline injection combined with turbo charging and down sizing is a cost effective concept to meet future requirements for emission reduction as well as increased efficiency for passenger cars. It is well known that turbulence induced by in-cylinder air motion can influence efficiency. In this study, the intake-generated flow field was varied for a direct injected turbo charged concept, with the intent to evaluate if further increase in tumble potentially could lead to higher efficiency compared to the baseline. A single cylinder head with flow separating walls in the intake ports and different restriction plates was used to allow different levels of tumble to be experimentally evaluated in a single cylinder engine. The different levels of tumble were quantified by flow rig experiments.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Study of EGR and Turbocharger Combinations and Their Influence on Diesel Engine’s Efficiency and Emissions

2016-04-05
2016-01-0676
An experimental study of EGR and turbocharging concepts has been performed on an experimental 2.0-litre 4-cylinder turbocharged Euro6 light-duty diesel engine. The purpose of the study was to investigate the emissions and fuel consumption trade-off for different concept combinations. The impact of low-pressure and high-pressure EGR was studied in terms of engine-out emissions and fuel consumption. Moreover, the influence of single-stage and two-stage turbocharging was investigated in combination with the EGR systems, and how the engine efficiency could be further improved after engine calibration optimization. During low load engine operation where throttling may be required to achieve the desired low-pressure EGR rate, the difference in fuel consumption impact was studied for exhaust throttling and intake throttling, respectively. The cooling impact on high-pressure EGR was compared in terms of emissions and fuel consumption.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Journal Article

Performance Studies and Correlation between Vehicle- and Rapid- Aged Commercial Lean NOx Trap Catalysts

2017-03-28
2017-01-0940
Even though substantial improvements have been made for the lean NOx trap (LNT) catalyst in recent years, the durability still remains problematic because of the sulfur poisoning and sintering of the precious metals at high operating temperatures. Hence, commercial LNT catalysts were aged and tested in order to investigate their performance and activity degradation compared to the fresh catalyst, and establish a proper correlation between the aging methods used. The target of this study is to provide useful information for regeneration strategies and optimize the catalyst management for better performance and durability. With this goal in mind, two different aging procedures were implemented in this investigation. A catalyst was vehicle-aged in the vehicle chassis dynamometer for 100000 km, thus exposed to real conditions. Whereas, an accelerated aging method was used by subjecting a fresh LNT catalyst at 800 °C for 24 hours in an oven under controlled conditions.
Technical Paper

Multidisciplinary Simulation Model for the Balancing of Powertrain Combustion, Control and Components for Optimal Fuel Consumption, Emissions, Cost and Performance for a Diesel Engine Powered Passenger Car

2012-09-10
2012-01-1572
Passenger cars equipped with diesel engines will meet challenging emission legislation for the coming decade, with introduction of Euro6 and Euro7, which comprises reduced NOX emissions and possibly new driving cycles including off-cycle limits. The technology measures to meet these legislative limits comprise a broad spectrum of engine and aftertreatment, i.e., engine measures such as improved fuel injection with respect to mass and timing, improved exhaust gas recirculation, improved warm-up and reduced friction, as well as aftertreatment measures such as selective catalytic reduction and lean NOX trap in combination with diesel particulate filter, and the thereby associated engine control. The resulting technology matrix is therefore large, and calls for a multidisciplinary simulation approach for appropriate selection and optimization of technology and control with the objectives and constraints of emissions, fuel consumption, performance and cost.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

LEV II Applications Based on a Lean Start Calibration

2001-03-05
2001-01-1311
This paper compares and discusses the impact of conventional and improved start strategies on the design of the exhaust aftertreatment system. It is recognised that hardware measures on the exhaust side will not be sufficient if Volvo's 5 and 6 cylinder engines are to fulfil SULEV emission levels, assuming passive three way systems only. A new start strategy, providing an excessive heat profile combined with low engine out hydrocarbon emissions, was therefore developed. Temperature profiles, raw emissions and mass flow obtained with the Lean Start Calibration will be shown for the 5 and 6 cylinder engines, both naturally aspirated as turbo. The remaining part of the paper presents a brief history of the exhaust aftertreatment design modifications for Volvo's 5 cylinder N/A engine fulfilling LEV, ULEV I, ULEV II and PZEV emission levels respectively. The impact of the new start strategy on the cold start performance will be shown.
Technical Paper

Ion Current Sensing in an Optical HCCI Engine with Negative Valve Overlap

2007-01-23
2007-01-0009
Ion current sensors have high potential utility for obtaining feedback signals directly from the combustion chamber in internal combustion engines. This paper describes experiments performed in a single-cylinder optical engine operated in HCCI mode with negative valve overlap to explore this potential. A high-speed CCD camera was used to visualize the combustion progress in the cylinder, and the photographs obtained were compared with the ion current signals. The optical data indicate that the ions responsible for the chemiluminescence from the HCCI combustion have to be in contact with the sensing electrode for an ion current to start flowing through the measurement circuit. This also means that there will be an offset between the time at which 50% of the fuel mass has burned and 50% of the ion current peak value is reached, which is readily explained by the results presented in the paper.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Technical Paper

Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine

2019-09-09
2019-24-0062
The objective of this investigation was to improve the thermal properties of plasma sprayed thermal barrier coatings (TBC) for internal combustion engines. There is a need for further reduction of thermal conductivity and volumetric heat capacity and the negative effects on heat loss and combustion phasing of surface roughness and permeable porosity, typical for plasma sprayed coatings, should be minimized. Four measures for improvement of TBC properties were evaluated: i) modification of the coating's microstructure by using a novel suspension plasma spraying method, ii) application of gadolinium-zirconate, a novel ceramic material with low thermal conductivity, iii) polishing of the coating to achieve low surface roughness, and iv) sealing of the porous coating surface with a polysilazane. Six coating variants with different combinations of the selected measures were applied on the piston crown and evaluated in a single cylinder light duty diesel engine.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Engine Presence in Diesel Engine Passenger Cars

2016-06-15
2016-01-1786
Highly refined NVH (Noise, Vibration and Harshness) is a key attribute for premium segment passenger cars. All noise sources such as powertrain, tires, wind, climate unit and etc. must be well balanced and at such a low level that the customer expectations are met or exceeded. However, not only are the NVH levels of importance but the character of the noise must also meet the high demands from premium car customers. This is especially true for diesel engines which historically have been more prone to have a less refined engine noise character than petrol engines. This paper will describe an investigation of what is defined as “engine presence” in four-cylinder diesel engine cars. The scope is to define a method for consistent subjective assessment of engine presence and to find the relationship and investigate the correlation between the “perceived loudness”, “perceived harshness” and the overall engine presence interior of the car.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Development of the Euro 5 Combustion System for Volvo Cars' 2.4.I Diesel Engine

2009-04-20
2009-01-1450
The development of a new combustion system for a light-duty diesel engine is presented. The soot-NOx trade-off is significantly improved with maintained or improved efficiency. This is accomplished only by altering the combustion chamber geometry, and thereby the in-cylinder flow. The bowl geometry is developed in CFD and validated in single cylinder tests. Tests and simulations align remarkably well. Under identical conditions in the engine the new combustion chamber decreases smoke by 11-27%, NOx by 2-11%, and maintains efficiency as compared to the baseline geometry. The injector nozzle is matched to the new bowl using design of experiments (DoE). By this method transfer functions are obtained that can be used to optimize the system using analytical tools. The emissions show a complex dependence on the nozzle geometry. The emission dependence on nozzle geometry varies greatly over the engine operating range.
Technical Paper

Development of the Combustion System for Volvo Cars Euro6d VEA Diesel Engine

2017-03-28
2017-01-0713
The demands for a future diesel engine in terms of emission compliance, CO2 emissions, performance and cost effectiveness set new requirements for the development process of the combustion system. This paper focuses on the development of the next generation Volvo Cars diesel combustion system, which should comply with Euro 6d including Real Driving Emissions (RDE), with emphasis on the novel methods applied throughout the process. The foundation of a high performing combustion system is formed by first determining the requirements for the system, after which the key factors that affect system performance are selected, such as the charge motion, combustion chamber geometry and injector nozzle geometry. Based on the requirements, a robust charge motion with desired flow characteristics is defined. A new automated CFD optimization process for combustion chamber geometry and spray target is developed.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Technical Paper

Demonstration of Two-Dimensional Temperature Characterization of Valves and Transparent Piston in a GDI Optical Engine

2004-03-08
2004-01-0609
Thermographic phosphors thermometry was used to measure engine valves and transparent piston temperatures in two dimensions as well point wise of a running, optically accessible, gasoline direct injection engine. The engine, fueled with isooctane, was operated in continuous and skip-fire mode at 1200 and 2000 rpm. A calibration of the phosphorescence lifetime and spectral properties against temperature allowed temperature measurements between 25 and 600°C. Results from the measurements show the potential of the technique for two-dimensional mapping of engine walls, valves and piston temperatures inside the cylinder.
Technical Paper

Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine

2003-03-03
2003-01-0753
Operating an engine in homogeneous charge compression ignition (HCCI) mode requires the air fuel mixture to be very lean or highly diluted with residuals. This is in order to slow the kinetics down and to avoid too rapid heat release. Consequently, the operational window for the engine in HCCI mode is not the same as for the engine operating in spark ignited (SI) mode. Homogeneous charge compression ignition engine mode, in this study, is accomplished by trapping residual mass using variable valve timing. With the residual trapping method, the engine cannot be started in HCCI mode and due to the dilution, the engine in HCCI mode can only be operated in the part - load regime. Hence, a mode change between spark ignited and HCCI modes, and vice versa is required. This study reports the development of a mode change strategy for a single cylinder camless engine, and its successful implementation in a camless multi cylinder engine.
X