Refine Your Search

Topic

Author

Search Results

Technical Paper

Wake and Unsteady Surface-Pressure Measurements on an SUV with Rear-End Extensions

2015-04-14
2015-01-1545
Previous research on both small-scale and full-scale vehicles shows that base extensions are an effective method to increase the base pressure, enhancing pressure recovery and reducing the wake size. These extensions decrease drag at zero yaw, but show an even larger improvement at small yaw angles. In this paper, rear extensions are investigated on an SUV in the Volvo Cars Aerodynamic Wind Tunnel with focus on the wake flow and on the unsteady behavior of the surface pressures near the base perimeter. To increase the effect of the extensions on the wake flow, the investigated configurations have a closed upper- and lower grille (closed-cooling) and the underbody has been smoothed with additional panels. This paper aims to analyze differences in flow characteristics on the wake of an SUV at 0° and 2.5° yaw, caused by different sets of extensions attached to the base perimeter. Extensions with several lengths are investigated with and without a kick.
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Supporting an Automotive Safety Case through Systematic Model Based Development - the EAST-ADL2 Approach

2008-04-14
2008-01-0127
Automotive electronic systems are becoming safety related causing a need for more systematic and stringent approaches for demonstrating the functional safety. The safety case consists of an argumentation, supported by evidence, of why the system is safe to operate in a given context. It is dependent on referencing and aggregating information which is part of the EAST-ADL2, an architecture description language for automotive embedded systems. This paper explores the possibilities of integrating the safety case metamodel with the EAST-ADL2, enabling safety case development in close connection to the system model. This is done by including a safety case object in EAST-ADL2, and defining the external and internal relations.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Technical Paper

Strive for Zero Emissions Impact from Hybrids

2019-09-09
2019-24-0146
Since several decades, passenger cars and light duty vehicles (LDV) with spark-ignited engines reach full pollutant conversion during warm up conditions; the major challenge has been represented by the cold start and warming up strategies. The focus on technology developments of exhaust after treatment systems have been done in the thermal management in order to reach the warm up conditions as soon as possible. A new challenge is now represented by the Real Driving Emission (RDE) Regulation as this bring more various, and not any longer cycle defined, cold start conditions. On the other hand, once the full conversion has been reached, it would be beneficial for many Exhaust After Treatment System (EATS) components, e.g. for overall durability if the exhaust gas temperature could be lowered. To take significant further emission steps, approaching e.g. zero emission concepts, we investigate the use of Electrical Heating Catalyst (EHC) also including pre-heating.
Technical Paper

Simulation of Vehicle Pitch in Sled Testing

1985-02-25
850098
In HYGE sled simulations of 35 mph barrier crashes with the Volvo 760 dummy kinematics and injury criteria have been different from what can be observed in barrier crashes One of the major differences between sled testing and barrier crashes is the car pitch in the barrier crashes. In order to improve the sled testing a method to simulate pitch on the sled was developed. Dummy kinematics and injury criteria from sled tests with pitch simulation have proved to be in good agreement with results from barrier crashes. The paper will give a more detailed description of vehicle pitch, the sled pitch arrangement and a comparison of dummy kinematics and injury criteria from barrier crashes and sled testing with and without pitch displacement.
Journal Article

Simulation of Energy Used for Vehicle Interior Climate

2015-12-01
2015-01-9116
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Although there are several methods described in the literature for analyzing fuel consumption for parts of the climate control system, especially the Air-Condition (AC) system, the total fuel consumption including the vehicle interior climate has often been ignored, both in complete vehicle testing and simulation. The purpose of this research was to develop a model that predicts the total energy use for the vehicle interior climate. To predict the total energy use the model included sub models of the passenger compartment, the air-handling unit, the AC, the engine cooling system and the engine.
Technical Paper

SULEV Emission Technologies for a Five Cylinder N/A Engine

2000-03-06
2000-01-0894
The new SULEV legislation for passenger cars with gasoline powered engines, which will be introduced with the California LEV II program in the year 2003, requires a further development of the exhaust aftertreatment system. Three fundamentally different system approaches, each with very high efficiency in reducing cold start hydrocarbons, will be discussed in this paper. Vehicle test results will be presented to illustrate the potential of the respective systems towards the SULEV requirements. Durability aspects are also considered since an increased durability of 120 000 and even 150 000 miles is imposed by the legislation.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

PremAir® Catalyst System

1998-10-19
982728
Traditional approaches to pollution control have been to develop benign non-polluting processes or to abate emissions at the tailpipe or stack before emitting to the atmosphere. A new technology called PremAir®* Catalyst Systems takes a different approach and directly reduces ambient ground level ozone. This technology can be applied to both mobile and stationary applications. For automotive applications, the new system involves placing a catalytic coating on the car's radiator or air conditioner condenser. As air passes over the radiator or condenser, the catalyst converts the ozone into oxygen. Three Volvo vehicles with a catalyst coating on the radiator were tested on the road during the 1997 summer ozone season in southern California to assess performance. Studies were also conducted in Volvo's laboratory to determine the effect of the catalyst coating on the radiator's performance with regard to corrosion, heat transfer and pressure drop.
Technical Paper

Organic Evolution of Development Organizations - An Experience Report

2016-04-05
2016-01-0028
In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO (Ilmenau-Volvo) model and a neural-network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrized to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Technical Paper

Interior Sound of Today's Electric Cars: Tonal Content, Levels and Frequency Distribution

2015-06-15
2015-01-2367
When it comes to the acoustic properties of electric cars, the powertrain noise differs dramatically compared to traditional vehicles with internal combustion engines. The low frequency firing orders, mechanical and combustion noise are exchanged with a more high frequency whining signature due to electromagnetic forces and gear meshing, lower in level but subject to annoyance. Previous studies have highlighted these differences and also investigated relevant perception criteria in terms of psycho-acoustic metrics. However, investigations of differences between different kinds of electric and hybrid electric cars are still rare. The purpose of this paper was to present the distribution of tonal components in today's hybrid/electric vehicles. More specifically, the number of prominent orders, their maximum levels and frequency separation were analyzed for the most critical driving conditions. The study is based upon measurements made on 13 electrified cars on the market.
Technical Paper

Improving Subjective Assessment of Vehicle Dynamics Evaluations by means of Computer-Tablets as Digital Aid

2016-04-05
2016-01-1629
Vehicle dynamics development relies on subjective assessments (SA), which is a resource-intensive procedure requiring both expert drivers and vehicles. Furthermore, development projects becoming shorter and more complex, and increasing demands on quality require higher efficiency. Most research in this area has focused on moving from physical to virtual testing. However, SA remains the central method. Less attention has been given to provide better tools for the SA process itself. One promising approach is to introduce computer-tablets to aid data collection, which has proven to be useful in medical studies. Simple software solutions can eliminate the need to transcribe data and generate more flexible and better maintainable questionnaires. Tablets’ technical features envision promising enhancements of SA, which also enable better correlations to objective metrics, a requirement to improve CAE evaluations.
X