Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems

2016-04-05
2016-01-1368
To improve fuel efficiency and facilitate handling of the vehicle in a dense city environment, it should be as small as possible given its intended application. This downsizing trend impacts the size of the engine bay, where the air filter box has to be packed in a reduced space, still without increased pressure drop, reduced load capacity nor lower filtering efficiency. Due to its flexibility and reduced cost, CFD simulations play an important role in the optimization process of the filter design. Even though the air-flow through the filter box changes as the dust load increases, the current modeling framework seldom account for such time dependence. Volvo Car Corporation presents an industrial affordable model to solve the time-dependent dust load on filter elements and calculate the corresponding flow behavior over the life time of the air filter box.
Technical Paper

Optimizing the Natural Gas Engine for CO2 reduction

2016-04-05
2016-01-0875
With alternative fuels having moved more into market in light of their reduction of emissions of CO2 and other air pollutants, the spark ignited internal combustion engine design has only been affected to small extent. The development of combustion engines running on natural gas or Biogas have been focused to maintain driveability on gasoline, creating a multi fuel platform which does not fully utilise the alternative fuels’ potential. However, optimising these concepts on a fundamental level for gas operation shows a great potential to increase the level of utilisation and effectiveness of the engine and thereby meeting the emissions legislation. The project described in this paper has focused on optimising a combustion concept for CNG combustion on a single cylinder research engine. The ICE’s efficiency at full load and the fuels characteristics, including its knock resistance, is of primary interest - together with part load performance and overall fuel consumption.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
X