Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Reduction of Fuel Consumption and Engine-out NOx Emissions in a Lean Homogeneous GDI Combustion System, Utilizing Valve Timing and an Advanced Ignition System

2015-04-14
2015-01-0776
This study investigated how the amount of dilution applied can be extended while maintaining normal engine operation in a GDI engine. Adding exhaust gases or air to a stoichiometric air/fuel mixture yields several advantages regarding fuel consumption and engine out emissions. The aim of this paper is to reduce fuel consumption by means of diluted combustion, an advanced ignition system and adjusted valve timing. Tests were performed on a Volvo four-cylinder engine equipped with a dual coil ignition system. This system made it possible to extend the ignition duration and current. Furthermore, a sweep was performed in valve timing and type of dilution, i.e., air or exhaust gases. While maintaining a CoV in IMEP < 5%, the DCI system was able to extend the maximum lambda value by 0.1 - 0.15. Minimizing valve overlap increased lambda by an additional 0.1.
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
X