Refine Your Search

Topic

Author

Search Results

Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

A Comprehensive Study of the Impact of Tread Design on the Tire-Terrain Interaction using Advanced Computational Techniques

2023-04-11
2023-01-0018
This paper investigates the impact of tread design on the tire-terrain interaction of two similar-sized truck tires with distinctly different tread designs running over various terrains and operating conditions using advanced computation techniques. The two truck tires used in the research are off-road tires sized 315/80R22.5 wide which were designed through Finite Element Analysis (FEA). The truck tire models were validated in static and dynamic domains using several simulation tests and measured data. The terrain includes a flooded surface and a snowed surface which were modelled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated using pressure-sinkage and direct shear tests. Both truck tire models were subjected to rolling resistance and cornering tests over the various flooded surface and snowed surface terrain conditions on the PAM-CRASH software.
Technical Paper

A Machine Learning Approach for Hydrogen Internal Combustion (H2ICE) Mixture Preparation

2024-01-16
2024-26-0254
The present work discusses the potential benefits of using computational fluid dynamics (CFD) simulation and artificial intelligence (AI) in the design and optimization of hydrogen internal combustion engines (H2ICEs). A Machine Learning (ML) model is developed and applied to the CFD simulation data to identify optimal injection system parameters on the Sandia H2ICE Engine to improve the mixing. This approach can aid in developing predictive ML models to guide the design of future H2ICEs. For the current engine configuration, it is observed that hydrogen (H2) gas injection contributes mixing of H2 with air. If the injector parameters are optimized, mixture preparation is better and eventually combustion. A base CFD model is validated from the Sandia H2ICE engine data against Particle Image Velocimetry (PIV) data for velocity and Planar Laser Induced Fluorescence (PLIF) data for H2 mass fraction.
Technical Paper

A Numerical Investigation of Gas Exchange Modeling and Performance Prediction of a Camless Two-Stroke Hydrogen Engine

2023-04-11
2023-01-0232
Heavy-duty vehicles are primarily powered by diesel fuel, emitting CO2 emissions regardless of the exhaust after-treatment system. Contrastingly, a hydrogen engine has the potential to decarbonize the transportation sector as hydrogen is a carbon free, renewable fuel. In this study, a multi-physics 1D simulation tool (GT-Power) is used to model the gas exchange process and performance prediction of a two-stroke hydrogen engine. The aim is to establish a maximum torque-level for a four-stroke hydrogen engine and then utilize different methods for two-stroke modeling to achieve similar torque by optimizing the gas exchange process. A camless engine is used as base, enabling the flexibility to utilize approximately square valve lift profiles. The preliminary step is the GT-Power model validation, which has been done using diesel and hydrogen engines (single-cylinder heavy-duty) experiments at different operating points (871 rpm, 1200 rpm, 1259 rpm, and 1508 rpm).
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

Aeroacoustics of Heavy Duty Truck Side Mirrors - An Experimental Study

2018-06-13
2018-01-1516
Side mirrors are a known source of aerodynamically generated noise in vehicles. In this work we focus on mirrors for heavy duty trucks, they are large, often not designed with main focus on aero-acoustics and are located in a cumbersome position on the up-right A-pillar of European trucks. First the test method itself is discussed. To allow fast and cost effective design loops a bespoke vehicle, where the powertrain is separated from the cab, is developed. This vehicle can be run on a standard test track. While running the tests the wind speed is monitored, any variations are then compensated for in the post processing allowing averaging over longer time periods. For the mirror tests the door of the vehicle was especially trimmed to reduce other transmission paths into the cab than the side window. Additionally other possible aeroacoustic sources were reduced as much as practically possible.
Journal Article

Aerodynamic Investigation of Gap Treatment- and Chassis Skirts Strategies for a Novel Long-Haul Vehicle Combination

2012-09-24
2012-01-2044
Constantly lowering emissions legislation and the fact that fuel prices have increased tremendously over recent years, have forced vehicle manufacturers to develop more and more energy-efficient vehicles. The aerodynamic drag is responsible for a substantial part of the total driving resistance for a vehicle, especially at higher velocities; thus it is important to reduce this factor as much as possible for vehicles commonly operating in these conditions. In an attempt to improve transport efficiency, longer vehicle combinations are becoming more common. By replacing some of the shorter vehicle combinations with longer combinations, the same amount of cargo can be transported with fewer vehicles; hence there is large potential for fuel savings. The knowledge of the aerodynamic properties of such vehicles is somewhat limited, and therefore interesting to study.
Technical Paper

Automatic Functionality Assignment to AUTOSAR Multicore Distributed Architectures

2016-04-05
2016-01-0041
The automotive electronic architectures have moved from federated architectures, where one function is implemented in one ECU (Electronic Control Unit), to distributed architectures, where several functions may share resources on an ECU. In addition, multicore ECUs are being adopted because of better performance, cost, size, fault-tolerance and power consumption. In this paper we present an approach for the automatic software functionality assignment to multicore distributed architectures. We consider that the systems use the AUTomotive Open System ARchitecture (AUTOSAR). The functionality is modeled as a set of software components composed of subtasks, called runnables, in AUTOSAR terminology.
Technical Paper

CFD Method and Simulations on a Section of a Detailed Multi-Louvered Fin Where the Incoming Air is Directed at 90° and 30° Relative to the Compact Heat-Exchanger

2013-09-24
2013-01-2417
This paper presents results and a Computational Fluid Dynamics (CFD) method for simulation of a detailed louvered fin for a multi-louvered compact heat-exchanger. The airflow was angled at 90°, +30° and −30° relative to the heat-exchanger to evaluate changes in static pressure drop and airflow characteristics. The investigation was based on three heat-exchangers with thicknesses of 52mm and two of 19mm. One period of a detailed louvered fin was simulated for two airflows for each heat-exchanger. The pressure drop data was thereafter compared to experimental data from a full-size heat-exchanger. From the pressure drop and the airflow characteristic results recommendations were made that those kinds of simulations could be defined as steady state, and with the kω-SST turbulence model. For the same heat-exchanger angle the airflow within the core was similar, with a turbulent characteristic behind it.
Journal Article

CFD Simulations of one Period of a Louvered Fin where the Airflow is Inclined Relative to the Heat Exchanger

2015-04-14
2015-01-1656
This article presents Computational Fluid Dynamics (CFD) simulations fo one period of a louvered fin, for a crossflow compact finned heat exchanger, where the incoming airflow was inclined relative to its core. Four inclinations were investigated: 90°, which was when the air flowed perpendicular to the heat exchanger, 60°, 30° and 10° angles relative to the vertical plane. The study included three heat exchanger designs, where two of them had symmetrical louvered fins and a thickness of 19mm and 52mm. The third had a thickness of 19mm and had the louvers angled in one direction. All heat exchangers have been simulated when the airflow entered both from above and below relative to the horizontal plane. Simulations have also been carried out when the airflow entered from the side, illustrating the heat exchanger to be angled relative to the vertical axis. Two air speeds have been investigated for each configuration, where the results were compared to experimental data.
Journal Article

Comparative Studies between CFD and Wind Tunnel Measurements of Cooling Performance and External Aerodynamics for a Heavy Truck

2014-09-30
2014-01-2443
Nowadays, much focus for vehicle manufacturers is directed towards improving the energy efficiency of their products. The aerodynamic drag constitutes one major part of the total driving resistance for a vehicle travelling at higher speeds. In fact, above approximately 80km/h the aerodynamic drag is the dominating resistance acting on a truck. Hence the importance of reducing this resistance is apparent. Cooling drag is one part of the total aerodynamic drag, which arises from air flowing through the heat exchangers, and the irregular under-hood area. When using Computational Fluid Dynamics (CFD) in the development process it is of great importance to ensure that the methods used are accurately capturing the physics of the flow. This paper deals with comparative studies between CFD and wind-tunnel tests. In this paper, two comparative studies are presented.
Technical Paper

Determining the Vertical and Longitudinal First Mode of Vibration of a Wide Base FEA Truck Tire

2016-04-05
2016-01-1308
The purpose of this study is to determine the effect of tire operating conditions, such as the tire inflation pressure, speed, and load on the change of the first mode of vibration. A wide base FEA tire (445/50R22.5) is virtually tested on a 2.5m diameter circular drum with a 10mm cleat using PAM-Crash code. The varying parameters are altered separately and are as follows: inflation pressure, varying from 50 psi to 165 psi, rotational speed, changing from 20 km/h to 100 km/h, and the applied load will fluctuate from 1,500 lbs. to 9000 lbs. Through a comparison of previous literature, the PAM-Crash FFT algorithmic results have been validated.
Technical Paper

Development and Validation of a Multicomponent Fuel Spray Model (VSB2 Model)

2017-10-08
2017-01-2197
Owing to increased interest in blended fuels for automotive applications, a great deal of understanding is sought for the behavior of multicomponent fuel sprays. This sets a new requirement on spray model since the volatility of the fuel components in a blend can vary substantially. It calls for careful solution to implement the differential evaporation process concerning thermodynamic equilibrium while maintaining a robust solution. This work presents the Volvo Stochastic Blob and Bubble (VSB2) spray model for multicomponent fuels. A direct numerical method is used to calculate the evaporation of multicomponent fuel droplets. The multicomponent fuel model is implemented into OpenFoam CFD code and the case simulated is a constant volume combustion vessel. The CFD code is used to calculate liquid penetration length for surrogate diesel (n-dodecane)-gasoline (iso-octane) blend and the result is compared with experimental data.
Technical Paper

Development of Truck Tire-Soil Interaction Model using FEA and SPH

2013-04-08
2013-01-0625
Modern Finite Element Analysis (FEA) techniques allow for accurate simulation of various non-linear systems. However they are limited in their simulation of particulate matter. This research uses smooth particle hydrodynamics (SPH) in addition to FEA techniques to model the properties of soils, which allows for particle-level replication of soils. Selected soils are simulated in a virtual environment and validated using the pressure-sinkage and shear tests. A truck tire model is created based on standard heavy vehicle tires and validated using static deflection, contact footprint, and dynamic first mode of vibration tests. The validated tires and soils are used to create a virtual terrain and the tire is placed on the soil, loaded, and run over the soil at various speeds. The results of these simulations show that the SPH modeling technique offers higher accuracy than comparable FEA models for soft soils at a higher computational cost.
Technical Paper

Development of a Modified Off-Road Rigid Ring Tire Model for Heavy Trucks

2014-04-01
2014-01-0878
The rigid-ring tire model is a simplified tire model that describes a tire's behaviour under known conditions through various in-plane and out-of-plane parameters. The complex structure of the tire model is simplified into a spring-mass-damper system and can have its behaviour parameterized using principles of mechanical vibrations. By designing non-linear simulations of the tire model in specific situations, these parameters can be determined. They include, but are not limited to, the cornering stiffness, vertical damping constants, self-aligning torque stiffness and relaxation length. In addition, off-road parameters can be determined using similar methods to parameterize the tire model's behaviour in soft soils. By using Finite Element Analysis (FEA) modeling methods, validated soil models are introduced to the simulations to find additional soft soil parameters.
Technical Paper

Development of a Wide Base Rigid Ring Tire Model for Rigid Surfaces

2015-04-14
2015-01-0626
The purpose of this research paper is to outline the procedure behind the parameter population of a wide-base rigid ring model. A rigid ring model is a mathematical representation of a highly non-linear FEA tire model that incorporates the characteristics and behaviour of a known physical tire. The rigid ring model parameters are determined using carefully designed virtual scenarios which will isolate for the parameter in question. Once all of the parameters have been calculated, for in-plane as well as out-of-plane parameters, a full rigid ring model can be populated. This model can also be modified to accommodate for a tire model simulated running over soft soils if necessary. For the purpose of this research however, the soft soil parameters were not determined. Once the rigid ring model is complete, the parameters can be used in a highly simplified virtual model to replicate the known behaviour of the tire but reduce the overall complexity of the full vehicle model.
Technical Paper

Dual Stage Front Underride Protection Devices (dsFUPDs): Collision Interface and Passenger Compartment Intrusion

2014-04-01
2014-01-0567
A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs.
Journal Article

Executable Digital Twin - Prevent the Early Failure of a Truck Anchorage Using Smart Virtual Sensors

2022-03-29
2022-01-0767
Executable Digital Twins (xDT) are starting a revolution in the industry, where high fidelity simulation models extend their usage from the design and validation phases to in-operation and service phase. Two critical technology blocks in this revolution are Model Order Reduction and Smart Virtual Sensing. The former allows the high-fidelity models to be represented in compact forms and the latter allows to extend the limits of physical sensors and provide full field data combining simulation models and test data in a real-time estimator framework. The smart virtual sensing technology leverages a state-of-the-art Kalman filtering approach to combine the simulation and physical testing. This allows to virtually measure locations that are not accessible with physical sensors due to e.g. physical constrains or high temperatures.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
X