Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Sources of Hydrocarbon Emissions from a Small Direct Injection Diesel Engine

1987-09-01
871613
The purpose of this paper is to clarify the mechanisms of unburnt hydrocarbon (HC) emissions from a small direct - injection (DI) diesel engine. HC emission levels of small DI diesel engines are considerably higher than those of corresponding indirect - injection (IDI) diesel engines, even when sacless injection nozzles that are effective in reducing HC emissions are installed on them. In this study, analytical engine tests were performed to evaluate the relative significance of various potential sources of HC emissions from a small DI diesel engine equipped with sacless type injectors.
Technical Paper

Potentiality of the Modification of Engine Combustion Rate for NOx Formation Control in the Premixed SI Engine

1975-02-01
750353
In order to study the potentiality of the modification of the combustion rate for NOx formation control in the spark ignition (SI) engine, the authors first developed a new mathematical model by assuming the stepped gas temperature gradient in the cylinder. The predicted results from this new mathematical model show good coincidence with the experimental data. Second, the authors discuss the effects of the modification of the combustion rate on NOx formation using the new mathematical model. It was concluded that NOx formation in the premixed SI engine would be essentially determined by the specific fuel consumption only, regardless of any modification of the engine combustion rate.
Technical Paper

Analytical Study on Engine Vibration Transfer Characteristics Using Single-Shot Combustion

1981-02-01
810403
In order to demonstrate the generation mechanism of “combustion noise” separately from “mechanical noise,” the process of transfer in which vibration travels to each engine portion was analyzed through single-shot combustion of a propane-air mixture in the combustion chamber with the crankshaft fixed at a given angle. The effect of the natural frequency of each portion of the engine on the vibration transfer characteristics is discussed by introducing a vibration transfer function. The transfer paths of exciting forces which are caused by the combustion are quantitatively clarified.
X