Refine Your Search

Topic

Author

Search Results

Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
Technical Paper

Upper Extremity Injuries Related to Air Bag Deployments

1994-03-01
940716
From our crash investigations of air bag equipped passenger cars, a subset of upper extremity injuries are presented that are related to air bag deployments. Minor hand, wrist or forearm injuries-contusions, abrasions, and sprains are not uncommonly reported. Infrequently, hand fractures have been sustained and, in isolated cases, fractures of the forearm bones or of the thumb and/or adjacent hand. The close proximity of the forearm or hand to the air bag module door is related to most of the fractures identified. Steering wheel air bag deployments can fling the hand-forearm into the instrument panel, rearview mirror or windshield as indicated by contact scuffs or tissue debris or the star burst (spider web) pattern of windshield breakage in front of the steering wheel.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Transient Flow Characteristics Inside the Catalytic Converter of a Firing Gasoline Engine

1997-02-24
971014
An experimental study was performed, using cycle-resolved laser Doppler velocimetry (LDV) technique, to characterize the exhaust flow structure inside a catalytic converter retro-fitted to a firing four-cylinder gasoline engine over different operating conditions. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for LDV measurements. It was found that in the front plane of the catalytic monolith, the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions. Under unloaded condition, four pairs of major peaks are clearly observed in the time history of the velocity, which correspond to the main exhaust events of each individual cylinder.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain

2004-11-01
2004-22-0012
Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Technical Paper

The Development of an Electronic Control Unit for a High Pressure Common Rail Diesel/Natural Gas Dual-Fuel Engine

2014-04-01
2014-01-1168
Natural gas has been considered to be one of the most promising alternative fuels due to its lower NOx and soot emissions, less carbon footprint as well as attractive price. Furthermore, higher octane number makes it suitable for high compression ratio application compared with other gaseous fuels. For better economical and lower emissions, a turbocharged, four strokes, direct injection, high pressure common rail diesel engine has been converted into a diesel/natural gas dual-fuel engine. For dual-fuel engine operation, natural gas as the main fuel is sequentially injected into intake manifold, and a very small amount of diesel is directly injected into cylinder as the ignition source. In this paper, a dual-fuel electronic control unit (ECU) based on the PowerPC 32-bit microprocessor was developed. It cooperates with the original diesel ECU to control the fuel injection of the diesel/natural gas dual-fuel engine.
Technical Paper

Temperature Effect on Performance of a Commercial Fuel Filter for Biodiesel Blends with ULSD

2010-04-12
2010-01-0473
Biodiesel offers a potentially viable alternative fuel source for diesel automotive applications. However, biodiesel may present problems at colder temperatures due to the crystallization of fatty acid methyl esters and precipitation of other components, such as unreacted triglycerides and sterol glycosides in biodiesel. At lower temperatures, the fuel gels until it solidifies in the fuel lines, clogging the fuel filter, and shutting down the engine. A laboratory-based continuous loop fuel system was utilized to determine the flow properties at low temperatures of biodiesel in B100, B20, and B10 blends for soybean and choice white grease (pig fat) biodiesel fuel. The continuous loop fuel delivery system was designed to be similar to those that can be found in engines and vehicles currently in use, and provided a mechanical pump or an electric pump as a means to simulate systems found in the different types of vehicles.
Technical Paper

Starting of Diesel Engines: Uncontrolled Fuel Injection Problems

1986-02-01
860253
Many problems can develop from the uncontrolled fuel injection during cranking and starting of diesel engines. Some of the problems are related to excessive wear as a result of the high peak pressures reached upon combustion after misfiring, the relatively low rotating speeds and the lack of formation of a lubricating oil film between the interacting surfaces. Another problem is the emission of high amounts of unburned hydrocarbons and white smoke. Experimental results are given for a single cylinder and a multicylinder diesel engine, for the instantaneous angular velocity and cylinder pressures from the starter-on point until the engine fires. The causes of misfiring during cranking are investigated. The role of the increased blow-by gases on the autoignition process at the low cranking speeds is analyzed both analytically and experimentally. The contribution of the instantaneous angular velocity at the time of injection, on the autoignition process is investigated.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

Self-Regulation Minimizes Crash Risk from Attentional Effects of Cognitive Load during Auditory-Vocal Tasks

2014-04-01
2014-01-0448
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving.
Technical Paper

SID Response Data in a Side Impact Sled Test Series

1992-02-01
920350
Heidelberg-type side impact sled tests were conducted using SID side impact dummies. These tests were run under similar conditions to a series of cadaveric sled tests funded by the Centers for Disease Control in the same lab. Tests included 6.7 and 9 m/s (15 and 20 mph) unpadded and 9 m/s padded tests. The following padding was used at the thorax: ARSAN, ARCEL, ARPAK, ARPRO, DYTHERM, 103 and 159 kPa (15 and 23 psi) crush strength paper honeycomb, and an expanded polystyrene. In all padded tests the dummy Thoracic Trauma Index, TTI(d) was below the value of 85 set by federal rulemaking (49 CFR, Part 571 et al., 1990). In contrast, cadavers in 9 m/s sled tests did not tolerate ARSAN 601 (MAIS 5) and 23 psi (159 kPa) paper honeycomb (MAIS 5), and 20 psi (138 kPa) Verticel™ honeycomb (MAIS 4), but tolerated 15 psi (103 kPa) paper honeycomb (average thoracic MAIS 2.3 in six tests).
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Technical Paper

Proposed Provisional Reference Values for the Humerus for Evaluation of Injury Potential

1996-11-01
962416
A humerus provisional reference value (PRV) based on human surrogate data was developed to help evaluate upper arm injury potential. The proposed PRV is based on humerus bone bending moments generated by testing pairs of cadaver arms to fracture in three-point bending on an Instron testing machine in either lateral-medial (L-M) or anterior-posterior (A-P) loading, at 218 mm/s and 0.635 mm/s loading rates. The results were then normalized and scaled to 50th and 5th percentile sized occupants. The normalized average L-M bending moment at failure test result was 6 percent more than the normalized average A-P bending moment. The normalized average L-M shear force at failure was 23 percent higher than the normalized average A-P shear force. The faster rate of loading resulted in a higher average bending moment overall - 8 percent in the L-M and 14 percent in the A-P loading directions.
Technical Paper

Performance, Durability, and Stability of a Power Generator Fueled with ULSD, S-8, JP-8, and Biodiesel

2010-04-12
2010-01-0636
The feasibility of using ultra low sulfur diesel (ULSD), synthetic paraffinic kerosene (S-8), military grade jet fuel (JP-8) and commercial B20 blend (20% v biodiesel in ULSD) in a power generator equipped with a compression ignition (CI) engine was investigated according to the MIL-STD-705C military specifications for engine-driven generator sets. Several properties of these fuels such as cetane number, lubricity, viscosity, cold flow properties, heat of combustion, distillation temperatures, and flash point, were evaluated. All fuels were tested for 240 hours at a stationary load of 30 kW (60% of full load) with no alteration to the engine calibrations. The brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), frequency, and power of the generator using S-8, JP-8 and B20 were compared with the baseline fuel ULSD.
Technical Paper

Performance and Mechanical Properties of Various Padding Materials Used in Cadaveric Side Impact Sled Tests

1992-02-01
920354
Various types of padding have been used in side impact sled tests with cadavers. This paper presents a summary of performance of the padding used in NHTSA and WSU/CDC sled tests, and a summary of material properties of padding used in cadaveric sled tests. The purpose of this paper is to provide information on padding performance in cadavers, rather than optimum padding performance in dummies.
Journal Article

On-Board Fuel Identification using Artificial Neural Networks

2014-04-01
2014-01-1345
On-board fuel identification is important to ensure engine safe operation, similar power output, fuel economy and emissions levels when different fuels are used. Real-time detection of physical and chemical properties of the fuel requires the development of identifying techniques based on a simple, non-intrusive sensor. The measured crankshaft speed signal is already available on series engine and can be utilized to estimate at least one of the essential combustion parameters such as peak pressure and its location, rate of cylinder pressure rise and start of combustion, which are an indicative of the ignition properties of the fuel. Using a dynamic model of the crankshaft numerous methods have been previously developed to identify the fuel type but all with limited applications in terms of number of cylinders and computational resources for real time control.
Technical Paper

On the Role of Cervical Facet Joints in Rear End Impact Neck Injury Mechanisms

1997-02-24
970497
After a rear end impact, various clinical symptoms are often seen in car occupants (e.g. neck stiffness, strain, headache). Although many different injury mechanisms of the cervical spine have been identified thus far, the extent to which a single mechanism of injury is responsible remains uncertain. Apart from hyperextension or excessive shearing, a compression of the cervical spine can also be seen in the first phase of the impact due to ramping or other mechanical interactions between the seat back and the spine. It is hypothesized that this axial compression, together with the shear force, are responsible for the higher observed frequency of neck injuries in rear end impacts versus frontal impacts of comparable severity. The axial compression first causes loosening of cervical ligaments making it easier for shear type soft tissue injuries to occur.
X