Refine Your Search

Topic

Author

Search Results

Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
Technical Paper

Using Polygot Persistence with NoSQL Databases for Streaming Multimedia, Sensor, and Messaging Services in Autonomous Vehicles

2020-04-14
2020-01-0942
The explosion of big data has created challenges for both cloud-based systems and Autonomous Vehicles (AVs) in data collection and management. The same challenges are now being realized in developing databases for integrated sensors, streaming, real-time and on-demand services in AVs. With just one AV expecting to generate over 30 Terabytes of data a day, modern NoSQL databases provide opportunities to horizontally scale AV data seamlessly. NoSQL provides solutions designed to accommodate a wide variety of data models such as, key-value, document, column and graph databases. Key-value stores are by nature scalable, fast processing, and distribute horizontally. These databases are tasked with handling several data types including IoT, radar, lidar, ultra-sonic sensors, GPS, odometry, and sensor data while providing streaming and real-time services. NoSQL can store and utilize structured, semi-structured, and unstructured data necessary for multimedia storage needs.
Technical Paper

The Effect of Variable Load Energy Absorbers on the Biodynamic Response of Cadavers

1975-02-01
751168
Several types of energy absorbers were tested on a sled simulating a crash deceleration using instrumented, seated erect dummies and cadavers. The energy absorbers were mechanical load limiting devices which attenuated the impact by yielding or tearing of metal. Their principal effects were to reduce the peak deceleration sustained by the occupant with the expected reduction in restraint forces. Constant load level energy absorbers were found to be unattractive because they can easily “bottom out” causing forces and body strains which could be much higher than those without absorbers. Head accelerations were significantly reduced by the energy absorbers as well as some body strain. However, spinal strains in the cadaver were not significantly reduced. They appear to be not only a function of the peak deceleration level but also of the duration of the pulse.
Journal Article

The Dimensional Model of Driver Demand: Visual-Manual Tasks

2016-04-05
2016-01-1423
Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
Technical Paper

The Determination of Response Characteristics of the Head with Emphasis on Mechanical Impedance Techniques

1967-02-01
670911
Certain physical characteristics such as apparent mass and stiffness influence the dynamic response of the head and thereby the degree of trauma suffered from impact with another body. These characteristics are a function of frequency and can be determined by mechanical impedance measurement techniques. A force generator was attached directly to the skull and the force input and resulting motion at the point of attachment were measured respectively by a force and acceleration transducer. The magnitude as well as phase angle between these two vectors were measured over the frequency range from 5 to 5,000 Hz. A plot of the ratio of force and acceleration vs. frequency and phase angle vs. frequency on a nomograph reveal that both the apparent mass and stiffness of the head vary markedly from static values, and with location.
Technical Paper

The Burning Velocity in a CFR Engine with Different Turbulent Flow Fields Generated by Intake Valves

1980-06-01
800860
An equation has been derived to calculate the burning velocity in a CFR engine from the measured flame speed under different turbulent flow fields. The turbulence is generated during the intake stroke as the fresh charge flows through different perforated 360° shrouded intake valves. The shrouds have holes of different sizes, but of the same total flow area. Results show that these valves decrease the cycle-to-cycle variation and produce higher burning velocities than conventional valves, particularly at higher engine speeds. The burning velocity depends on the Reynolds number as well as the turbulence scale.
Technical Paper

Testing the Validity and Limitations of the Severity Index

1970-02-01
700901
The head acceleration pulses obtained from monkey concussion, cadaver skull fracture (t = 0.002 sec), and football helmet experiments (0.006< t< 0.011 sec) have been subjected to injury hazard assessment by the Severity Index method. Although not directly applicable, the method correlates well with degree of monkey concussion. The range of Severity Indices for acceleration pulses obtained during impact to nine cadavers, all of which produced a linear fracture, was 540-1760 (1000 is danger to life) with a median value of 910. The helmet experiments showed good correlation between the Severity Index and the Wayne State University tolerance curve. These helmet tests also showed that a kinematics chart with curves of velocity change, stopping distance, average head acceleration, and time, with a superimposed Wayne State tolerance curve, can be useful in injury assessment.
Technical Paper

Study of Potential Mechanisms of Traumatic Rupture of the Aorta Using InSitu Experiments

2006-11-06
2006-22-0011
Traumatic rupture of the aorta (TRA) is an important transportation-related injury. This study investigated TRA mechanisms using in situ human cadaver experiments. Four quasi-static tests and one dynamic test were performed. The quasi-static experiments were conducted by perturbing the mediastinal structures of the cadavers. The mechanisms investigated included anterior, superior, and lateral displacement of the heart and aortic arch. The resulting injuries ranged from partial tears to complete transections. All injuries occurred within the peri-isthmic region. Intimal tears were associated with the primary injuries. The average failure load and stretch were 148 N and 30 percent for the quasi-static tests. This study illustrates that TRA can result from appropriate application of nominal levels of longitudinal load and tension. The results demonstrate that intraluminal pressure and whole-body acceleration are not required for TRA to occur.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

Strategies to Gain the Loss in Power in a Military Diesel Engine Using JP-8 Instead of ULSD

2020-04-14
2020-01-0804
The Department of Defense (DOD) has adopted the use of JP-8 under the “single battlefield fuel” policy. Fuel properties of JP-8 which are different from ULSD include cetane number, density, heating value and compressibility (Bulk modulus). While JP8 has advantages compared to ULSD, related to storage, combustion and lower soot emissions, its use cause a drop in the peak power in some military diesel engines. The engines that has loss in power use the Hydraulically actuated Electronic Unit Injection (HEUI) fuel system. The paper explains in details the operation of HEUI including fuel delivery into the injector and its compression to the high injection pressure before its delivery in the combustion chamber. The effect of fuel compressibility on the volume of the fuel that is injected into the combustion chamber is explained in details.
Technical Paper

Static and Dynamic Articular Facet Loads

1976-02-01
760819
Previous work on biodynamic response to whole-body +Gz (caudocephalad) acceleration gave ample evidence of facet loads in intact cadaveric spines. The computation of facet loads was based on an assumption that the total spine load was proportional to the measured seat pan load. In this study, the aim is to investigate the magnitude of the facet load during static and dynamic loading of an exised spinal segment. The applied loads resulted in a close simulation of those experienced by the intervertebral disc during whole-body impacts. An intervertebral load cell was used as the controlling mechanism in the duplication of the whole-body run in a testing machine. During these tests, both the total spine load and the intervertebral load were measured and thus the facet load was determined without relying on any assumptions.
Technical Paper

Spinal Loads Resulting from -Gx Acceleration

1973-02-01
730977
The biodynamic response of cadaver torsos subjected to -Gx impact acceleration is discussed in this paper, with particular emphasis on the response of the vertebral column. The existence of an axial force along the spine and its manifestation as a load on the seat pan are reported. Spinal curvature appears to be an important factor in the generation of this spine load. In anthropometric dummies, the spine load does not exist. Details of the testing and results are given, and the development of a mathematical model is shown.
Technical Paper

Shoulder Injury and Response Due to Lateral Glenohumeral Joint Impact: An Analysis of Combined Data

2005-11-09
2005-22-0014
To date, several lateral impact studies (Bolte et al., 2000, 2003, Marth, 2002 and Compigne et al., 2004) have been performed on the shoulder to determine the response characteristics and injury threshold of the shoulder complex. Our understanding of the biomechanical response and injury tolerance of the shoulder would be improved if the results of these tests were combined. From a larger data base shoulder injury tolerance criteria can be developed as well as corridors for side impact dummies. Data from the study by Marth (2002, 12 tests) was combined with data from the previous studies. Twenty-two low speed tests (4.5 ± 0.7 m/s) and 9 high speed tests (6.7 ± 0.7 m/s) were selected from the combined data for developing corridors. Shoulder force, deflection and T1y acceleration corridors were developed using a minimization of cumulative variance technique.
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

2011-04-12
2011-01-0508
Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Technical Paper

Safety Performance of a Chemically Strengthened Windshield

1969-02-01
690485
Safety performance of an experimental windshield with a thin, chemically tempered inner pane is compared with the standard windshield and other experimental windshields. The chemically tempered windshield has a penetration velocity of 35 mph compared with 26 mph penetration velocity for the standard windshield and has lower peak head accelerations than other types used in the experiments. The windshield tested produces a bulge on impact, which decelerates the head over a long distance with low accelerations. The bulge or pocket is lined with particles that are less lacerative than the standard annealed glass.
Technical Paper

Safe Interaction for Drivers: A Review of Driver Distraction Guidelines and Design Implications

2015-04-14
2015-01-1384
In this age of the Internet of Things, people expect in-vehicle interfaces to work just like a smartphone. Our understanding of the reality of in-vehicle interfaces is quite contrary to that. We review the fundamental principles and metrics for automotive visual-manual driver distraction guidelines. We note the rise in portable device usage in vehicles, and debunk the myth of increased crash risk when conversing on a wireless device. We advocate that portable electronic device makers such as Apple and Google should adopt driver distraction guidelines for application developers (whether for tethered or untethered device use in the vehicle). We present two design implications relevant to safe driving. First, the Rule of Platform Appropriateness: design with basic principles of ergonomics, and with driver's limited visual, manual and cognitive capacity, in mind. Second, the Rule of Simplicity: thoughtful reduction in the complexity of in-vehicle interfaces.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
Technical Paper

Product Development Process: Views and Analysis

2005-04-11
2005-01-1214
Dr. Edwards Deming spirited organizations “If you can't define what you do as a process, you don't know what your job is” (Weinstein, 1999). Significant effort has been conducted to engineer, deploy and control a process to product development. This coverage reflects impact of product development process on developing and producing consumer products effectively and successfully for the future. Reflecting on the past and observing mistakes and lessons learned would be key to help our companies to engineer future or modify existing product development processes. This paper examines views, types and needs of product development process from a six sigma perspective to enable deliver of competitive products with cost and time in mind. Learning from the past enlightens us to identify opportunities that would drive evolution and trend of product development process into the future. A recommended view is presented that changes the way product development process is designed and implemented.
Technical Paper

Parallel-Through-The-Road Plug-In Hybrid Vehicle Modeling and Simulation by Wayne State University for EcoCAR2

2013-04-08
2013-01-0541
The Wayne State University (WSU) EcoCAR2 student team designed, modeled, Model-In-the-Loop (MIL) tested, Software-In-the-Loop (SIL) simulation tested, and Hardware-In-the-Loop (HIL) simulation tested the team's conversion design for taking a 2013 Chevrolet Malibu and converting it into a Parallel-Through-The-Road (PTTR) plug-in hybrid. The 2013 Malibu is a conventional Front Wheel Drive (FWD) vehicle and the team's conversion design keeps the conventional FWD and adds a Rear Wheel Drive (RWD) powertrain consisting of an electric motor, a single speed reduction gearbox and a differential to drive the rear wheels -where none of these previously existed on the rear wheels. The RWD addition creates the PTTR hybrid powertrain architecture of two driven axles where the mechanical torque path connection between the two powertrains is through the road, rather than a mechanical torque path through gears, chains, or shafts.
X