Refine Your Search

Topic

Search Results

Technical Paper

Visualizing Automobile Disk Brake Squeals and Corresponding Out-of-Plane Vibration Modes

2005-05-16
2005-01-2319
Automobile disk brake squeal has always been one of the major customer complaints because of its extremely unpleasant, very high pitch and intense sound. Currently, diagnostics of vehicle brake squeals are conducted using a scanning laser vibrometer synchronized with squeals. This process is time consuming, especially when there is a hard-to-reach area for a laser beam to shine or when squeals have multiple frequencies for which filtering must be used so that individual out-of-plane vibration modes can be obtained. In this paper, a different method known as Helmholtz equation least squares (HELS) method based nearfield acoustical holography (NAH) is used to reconstruct all acoustic quantities, including the acoustic pressure, normal components of the surface velocity and acoustic intensity. In particular, the locations from which squeal is originated are identified and the out-of-plane vibration modes that are responsible for squeal sounds are established.
Journal Article

The Dimensional Model of Driver Demand: Visual-Manual Tasks

2016-04-05
2016-01-1423
Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
Technical Paper

The Determination of Response Characteristics of the Head with Emphasis on Mechanical Impedance Techniques

1967-02-01
670911
Certain physical characteristics such as apparent mass and stiffness influence the dynamic response of the head and thereby the degree of trauma suffered from impact with another body. These characteristics are a function of frequency and can be determined by mechanical impedance measurement techniques. A force generator was attached directly to the skull and the force input and resulting motion at the point of attachment were measured respectively by a force and acceleration transducer. The magnitude as well as phase angle between these two vectors were measured over the frequency range from 5 to 5,000 Hz. A plot of the ratio of force and acceleration vs. frequency and phase angle vs. frequency on a nomograph reveal that both the apparent mass and stiffness of the head vary markedly from static values, and with location.
Technical Paper

Suppression of Self-Excited Vibration by Dither Technique with Potential Application to Reduce Brake Squeal

2004-10-10
2004-01-2790
Disc brake squeal is a manifestation of the friction-induced self-excited instability of the brake system. One of known techniques in suppressing dynamic instabilities in nonlinear systems is by applying dither. The focus of this paper is to examine, through numerical examples, the feasibility and effects of dither on nonlinear systems as a means of quenching large-amplitude limit cycles. In particular, various ways of introducing the dither, either via modifications of the system characteristics or as external excitation, are explored. The investigation is extended to a disc brake system using finite elements simulations. Numerical results show that large-amplitude vibrations can be suppressed by dither and careful tuning of the amplitude and frequency of the dither can result in an effective quenching. The potential application of this technique to disc brake squeal control is also discussed.
Technical Paper

Study of Potential Mechanisms of Traumatic Rupture of the Aorta Using InSitu Experiments

2006-11-06
2006-22-0011
Traumatic rupture of the aorta (TRA) is an important transportation-related injury. This study investigated TRA mechanisms using in situ human cadaver experiments. Four quasi-static tests and one dynamic test were performed. The quasi-static experiments were conducted by perturbing the mediastinal structures of the cadavers. The mechanisms investigated included anterior, superior, and lateral displacement of the heart and aortic arch. The resulting injuries ranged from partial tears to complete transections. All injuries occurred within the peri-isthmic region. Intimal tears were associated with the primary injuries. The average failure load and stretch were 148 N and 30 percent for the quasi-static tests. This study illustrates that TRA can result from appropriate application of nominal levels of longitudinal load and tension. The results demonstrate that intraluminal pressure and whole-body acceleration are not required for TRA to occur.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Journal Article

Static and Dynamic Instabilities of Electrostatic Actuated MEMS Devices

2008-04-14
2008-01-0915
Fast and accurate characterization of stability regions and operational range with respect to pull-in voltage and displacement is critical in the design and development of MEMS resonators and switches. This paper presents a mathematical and computational procedure for modeling and analysis of static and dynamic instabilities of capacitive microdevices employing resonant microbeams. The mathematical model consists of a nonlinear microbeam under distributed electrostatic actuation and squeeze film damping. The coupled system is described by the nonlinear beam equation and a modified compressible Reynolds equation to account for the rarefied gas in the narrow gap between the microbeam and substrate. The Differential Quadrature Method (DQM) is used to discretize partial differential equations of motion and solve for static deflection, natural frequencies, static pull-in voltage, and quality factors for various encapsulation air pressures and applied DC voltages.
Technical Paper

Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines

1996-10-01
961925
An experimental study was made to investigate the spray characteristics of high pressure fuel injectors for direct-injection gasoline engines. The global spray development process was visualized using two-dimensional laser Mie scattering technique. The spray atomization process was characterized by Phase Doppler particle analyzer. The transient spray development process was investigated under different fuel injection conditions as a function of the time after the fuel injection start. The effects of injector design, fuel injection pressure, injection duration, ambient pressure, and fuel property on the spray breakup and atomization characteristics were studied in details. Two clear counter-rotating recirculation zones are observed at the later stage or after the end of fuel injection inside the fuel sprays with a small momentum. The circumferential distribution of the spray from the large-angle injector is quite irregular and looks like a star with several wings projected out.
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

2011-04-12
2011-01-0508
Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
Technical Paper

Prediction of Pressure Fluctuations Inside an Automotive Fuel Rail System

1999-03-01
1999-01-0561
A computer model is developed for predicting pressure fluctuations inside an automotive electronic fuel rail system, which consists of six injectors connected in series through pipelines and a pressure regulator. The pressure fluctuations are mainly caused by opening and closing of injectors fired in a particular order. The needles that control the opening and closing of the injectors are modeled by mass- spring-dashpot systems, whose equations of motion are governed by a second order ordinary differential equations. A similar second order ordinary differential equation is used to describe the motion of the membrane with nonlinear stiffness inside the pressure regulator. The responses of injectors and pressure regulator are coupled by unsteady one-dimensional flow through the pipelines. The pressure fluctuations are also required to satisfy a one-dimensional damped wave equation. To validate this computer model, pressure fluctuations inside injectors and pipelines are calculated.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

2012-04-16
2012-01-0098
Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Parallel-Through-The-Road Plug-In Hybrid Vehicle Modeling and Simulation by Wayne State University for EcoCAR2

2013-04-08
2013-01-0541
The Wayne State University (WSU) EcoCAR2 student team designed, modeled, Model-In-the-Loop (MIL) tested, Software-In-the-Loop (SIL) simulation tested, and Hardware-In-the-Loop (HIL) simulation tested the team's conversion design for taking a 2013 Chevrolet Malibu and converting it into a Parallel-Through-The-Road (PTTR) plug-in hybrid. The 2013 Malibu is a conventional Front Wheel Drive (FWD) vehicle and the team's conversion design keeps the conventional FWD and adds a Rear Wheel Drive (RWD) powertrain consisting of an electric motor, a single speed reduction gearbox and a differential to drive the rear wheels -where none of these previously existed on the rear wheels. The RWD addition creates the PTTR hybrid powertrain architecture of two driven axles where the mechanical torque path connection between the two powertrains is through the road, rather than a mechanical torque path through gears, chains, or shafts.
Technical Paper

On-Road and Chassis Dynamometer Evaluation of a Pre-Transmission Parallel PHEV

2019-04-02
2019-01-0365
This paper details the vehicle testing activities performed during the Year 4 of the EcoCAR 3 competition by the Wayne State University team on a Pre-Transmission Parallel PHEV. The paper focuses on two main testing platforms: the chassis dynamometer and the closed-course track (on-road). The focus of the former is to evaluate the emissions and energy consumption associated with different driving scenarios, while the latter has been used to assess the vehicle performance and their impact on the consumer appeal. The paper presents the objectives of each test, the setup accomplished for the different vehicle testing platforms, the results obtained and the comparison with the values expected from simulations. In addition, the impact of the results on the refinement of the control strategies and on the validation of the simulation models are discussed.
Technical Paper

Offline Electro-Hydraulic Clutch Bench Testing Alternatives for a Pre-Transmission Parallel Hybrid Powertrain

2016-10-17
2016-01-2225
This paper details the development of a test-bench simulation to characterize the behavior of an electro-hydraulic actuated dry clutch used in a pre-transmission parallel hybrid powertrain architecture of Wayne State University EcoCAR 3. Engage and disengage systems play a crucial role in a pre-transmission parallel hybrid architecture. The most common device used to meet the purpose of physically connecting internal combustion engine and electric powertrains is a dry clutch. Its own characteristics and capabilities allow its usage for this application. The transition between the pure electric and hybrid modes is dictated by the main control strategy. Therefore, the engaging system will be widely used when switching from charge depleting to charge sustaining mode, and vice versa. In addition, when torque is required from both sources for higher performance, the clutch will be responsible for mechanically connecting both torque sources.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Noise Analysis of Automotive Alternators

1999-05-17
1999-01-1712
An extensive experimental study of noise generating mechanisms of two production models of automotive alternators is presented. It was established that aerodynamic noise (generated by cooling fans) is dominating at high speeds (above 3,000 rpm), while electromagnetic noise is the most intensive at low rpm. Two directions of noise reduction are proposed and validated: reduction of noise levels generated by alternators to be achieved by using axial flow fans for cooling instead of presently used bladed discs, and radical reduction of operating speed of alternators by using variable transmission ratio accessory drives.
Technical Paper

Modeling the Vibrations of and Energy Distributions in Car Body Structures

2011-05-17
2011-01-1573
A general numerical method, the so-called Fourier Spectral Element Method (FSEM), is described for the dynamic analysis of complex systems such as car body structures. In this method, a complex dynamic system is viewed as an assembly of a number of fundamental structural components such as beams, plates, and shells. Over each structural component, the basic solution variables (typically, the displacements) are sought as a continuous function in the form of an improved Fourier series expansion which is mathematically guaranteed to converge absolutely and uniformly over the solution domain of interest. Accordingly, the Fourier coefficients are considered as the generalized coordinates and determined using the powerful Rayleigh-Ritz method. Since this method does not involve any assumption or an introduction of any artificial model parameters, it is broadly applicable to the whole frequency range which is usually divided into low, mid, and high frequency regions.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Emissions in a High-Speed Direct-Injection Diesel Engine

2001-03-05
2001-01-1004
Experimental data is used in conjunction with multi-dimensional modeling in a modified version of the KIVA-3V code to characterize the emissions behavior of a high-speed, direct-injection diesel engine. Injection pressure and EGR are varied across a range of typical small-bore diesel operating conditions and the resulting soot-NOx tradeoff is analyzed. Good agreement is obtained between experimental and modeling trends; the HSDI engine shows increasing soot and decreasing NOx with higher EGR and lower injection pressure. The model also indicates that most of the NOx is formed in the region where the bulk of the initial heat release first takes place, both for zero and high EGR cases. The mechanism of NOx reduction with high EGR is shown to be primarily through a decrease in thermal NOx formation rate.
X