Refine Your Search

Topic

Author

Search Results

Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Transient Emissions Comparisons of Alternative Compression Ignition Fuels

1999-03-01
1999-01-1117
The effects of fuel composition on emissions levels from compression ignition engines can be profound, and this understanding has led to mandated reductions in both sulfur and aromatic content of automotive diesel fuels. A Navistar T444E (V8, 7.3 liter) engine was installed on an engine dynamometer and subjected to transient emissions measurement using a variety of fuels, namely federal low sulfur pump diesel; California pump diesel; Malaysian Fischer-Tropsch fuel with very low sulfur and aromatic content; various blends of soy-derived biodiesel; a Fischer-Tropsch fuel with very low sulfur and 10% aromatics; and the same Fischer-Tropsch fuel with 10% isobutanol by volume. The biodiesel blends showed their ability to reduce particulate matter, but at the expense of increasing oxides of nitrogen (NOx), following the simple argument that cetane enhancement led to earlier ignition. However, the Fischer-Tropsch fuels showed their ability to reduce all of the regulated emissions.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Technical Paper

The Development of a Fourth Generation Hybrid Electric Vehicle at West Virginia University

2001-03-05
2001-01-0682
As a part of the FutureTruck 2000 advanced technology student vehicle competition sponsored by the US Department of Energy and General Motors, West Virginia University has converted a full-size sport utility vehicle into a high fuel efficiency, low emissions vehicle. The environmental impact of the Chevrolet Suburban SUV, in terms of both greenhouse gas emissions and exhaust emissions, was reduced through hybridization without losing any of the functionality and utility of the base vehicle. The approach taken was one of using a high efficiency, state-of-the-art direct injection, turbocharged diesel engine coupled to a high output electric traction motor for power assist and to recover regenerative braking energy. The vehicle employs a state-of-the-art combination lean NOx catalyst, oxidation catalyst and particulate filter to ensure low exhaust emissions.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Quality Assurance of Exhaust Emissions Test Data Measured Using Portable Emissions Measurement System

2005-10-24
2005-01-3799
Beginning 2007, heavy-duty engine certification would require that in-use emissions from vehicles be measured under ‘real-world’ operating conditions using on-board measurement devices. An on-board portable emissions measurement system called Mobile Emissions Measurement System (MEMS) was developed at West Virginia University (WVU) to record in-use, continuous and brake-specific emissions from heavy-duty diesel-powered vehicles. The objective of this paper is to present a preliminary development of a test data quality assurance methodology for emissions measured using the any portable emissions measurement system (PEMS). The first stage of the methodology requires ensuring the proper operation of the different sensors and transducers during data collection. The second stage is data synchronization and pre-processing. The next stage is systematic checking of possible errors from transducers and sensors.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

PM Concentration and Size Distributions from a Heavy-duty Diesel Engine Programmed with Different Engine-out Calibrations to Meet the 2010 Emission Limits

2009-04-20
2009-01-1183
The temporary deactivation of the selective catalytic reduction (SCR) device due to malfunction requires the engine control to engage multiple engine-out calibrations. Further, it is expected that emitted particles will be different in composition, size and morphology when an engine, which meets the 2010 particulate matter (PM) gravimetric limits, is programmed with multiple maps. This study investigated the correlation between SCR-out/engine-out PM emissions from an 11-liter Volvo engine. Measurement of PM concentrations and size distributions were conducted under steady state and transient cycles. Ion Chromatograph analysis on gravimetric filters at the SCR-out has revealed the presence of sulfates. Two different PM size-distributions were generated over a single engine test mode in the accumulation mode region with the aid of a design of experiment (DOE) tool. The SCR-out PM size distributions were found to correlate with the two engine-out distributions.
Technical Paper

Numerical Investigation of Dual Fuel Diesel-CNG Combustion on Engine Performance and Emission

2015-03-10
2015-01-0009
With the purpose of reducing emission level while maintaining the high torque character of diesel engine, various solutions have been proposed by researchers over the world. One of the most attractive methods is to use dual fuel technique with premixed gaseous fuel ignited by a relatively small amount of diesel. In this study, Methane (CH4), which is the main component of natural gas, was premixed with intake air and used as the main fuel, and diesel fuel was used as ignition source to initiate the combustion. By varying the proportion of diesel and CH4, the combustion and emissions characteristics of the dual fuel (diesel/CH4) combustion system were investigated. Different cases of CFD studies with various concentration of CH4 were carried out. A validated 3D quarter chamber model of a single cylinder engine (diesel fuel only) generated by using AVL Fire ESE was modified into dual fuel mode in this study.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

2014-04-01
2014-01-1588
Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Technical Paper

Neural Network-Based Diesel Engine Emissions Prediction Using In-Cylinder Combustion Pressure

1999-05-03
1999-01-1532
This paper explores the feasibility of using in-cylinder pressure-based variables to predict gaseous exhaust emissions levels from a Navistar T444 direct injection diesel engine through the use of neural networks. The networks were trained using in-cylinder pressure derived variables generated at steady state conditions over a wide speed and load test matrix. The networks were then validated on previously “unseen” real-time data obtained from the Federal Test Procedure cycle through the use of a high speed digital signal processor data acquisition system. Once fully trained, the DSP-based system developed in this work allows the real-time prediction of NOX and CO2 emissions from this engine on a cycle-by-cycle basis without requiring emissions measurement.
Technical Paper

Nearfield Analysis of Low Speed Flow over a Dielectric Barrier Discharge Device for Enhancement of Small UAV Aerodynamics

2018-10-30
2018-01-1953
As unmanned aerial vehicle applications continue their rise in popularity in the public and private sectors, there is an increasing demand in many cases for smaller, more efficient low speed unmanned aerial vehicles (UAVs). Although the primary drivers for the continued performance improvement of smaller UAV platforms tend to be in the areas of electronics miniaturization and improved energy storage, aerodynamics, particularly in the low Reynolds number regime, still have a significant role in the overall performance enhancement of small UAVs. This paper focuses on the study of the nearfield aerodynamic effects of a low-power active flow enhancement technique known as dielectric barrier discharge (DBD) in very low speed/low Reynolds number flows most closely associated with small and micro unmanned aerial vehicles.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Technical Paper

Misfire, Knock and NOx Mapping of a Laser Spark Ignited Single Cylinder Lean Burn Natural Gas Engine

2004-06-08
2004-01-1853
Evermore demanding market and legislative pressures require stationary lean burn natural gas engines to operate at higher efficiencies and reduced levels of emissions. Higher in-cylinder pressures and leaner air/fuel ratios are required in order to meet these demands. The performance and durability of spark plug ignition systems suffer as a result of the increase in spark energy required to maintain suitable engine operation under these conditions. Advancing the state of the art of ignition systems for these engines is critical to meeting increased performance requirements. Laser-spark ignition has shown potential to improve engine performance and ignition system durability to levels required meet or exceed projected requirements. This paper discusses testing which extends previous efforts [1] to include constant fueling knock, misfire, thermal efficiency, and NOx emissions mapping of a single cylinder lean burn natural gas engine.
Journal Article

Methodology to Determine the Fast Burn Period Inside a Heavy-Duty Diesel Engine Converted to Natural Gas Lean-Burn Spark Ignition Operation

2019-12-19
2019-01-2220
The conversion of existing diesel engines to natural-gas operation can reduce the dependence on petroleum imports and curtail engine-out emissions. A convenient way to perform such conversion is by adding a gas injector in the intake manifold and replacing the diesel fuel injector with a spark plug to initiate and control the combustion process. However, challenges may appear with respect to engine’s efficiency and emissions as natural-gas spark-ignition combustion inside a diesel combustion chamber is different to that in conventional spark ignition engines. For example, major difference is the phasing and duration of the fast burn, defined as the period in which the rate of heat release increases linearly with crank angle. This study presents a methodology to investigate the fast burn inside a diesel geometry using heat release data.
Technical Paper

Low Temperature Combustion with Thermo-Chemical Recuperation

2007-10-29
2007-01-4074
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Journal Article

Investigation of Small Scale Pulsed Detonation Engines and Feasibility Study for Implementation with Disposable Unmanned Aerial Systems

2013-09-17
2013-01-2304
Significant efforts have been made in the research of Pulsed Detonation Engines (PDEs) to increase the reliability and longevity of detonation based propulsion systems for use in manned aircraft. However, the efficiency, durability, and low mechanical complexity of PDEs opens up potential for use in disposable unmanned-vehicles. This paper details the steps taken for producing a miniaturized pulse detonation engine at West Virginia University (WVU) to investigate the numerically generated constraining dimensions for Deflagration to Detonation Transition (DDT) cited in this paper. Initial dimensions for the WVU PDE Demonstrator were calculated using fuel specific DDT spatial properties featured in the work of Dr. Phillip Koshy Panicker, of The University of Texas at Arlington. The WVU demonstrator was powered using oxygen and acetylene mixed in stoichiometric proportions.
Technical Paper

Investigation of Heat Transfer Characteristics of Heavy-Duty Spark Ignition Natural Gas Engines Using Machine Learning

2022-03-29
2022-01-0473
Machine learning algorithms are effective tools to reduce the number of engine dynamometer tests during internal combustion engine development and/or optimization. This paper provides a case study of using such a statistical algorithm to characterize the heat transfer from the combustion chamber to the environment during combustion and during the entire engine cycle. The data for building the machine learning model came from a single cylinder compression ignition engine (13.3 compression ratio) that was converted to natural-gas port fuel injection spark-ignition operation. Engine dynamometer tests investigated several spark timings, equivalence ratios, and engine speeds, which were also used as model inputs. While building the model it was found that adding the intake pressure as another model input improved model efficiency.
X