Refine Your Search

Topic

Search Results

Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Weight Effect on Emissions and Fuel Consumption from Diesel and Lean-Burn Natural Gas Transit Buses

2007-08-05
2007-01-3626
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
Technical Paper

Two Stroke Direct Injection Jet Ignition Engines for Unmanned Aerial Vehicles

2015-09-15
2015-01-2424
Unmanned Aerial Vehicles (UAV) require simple and reliable engines of high power to weight ratio. Wankel and two stroke engines offer many advantages over four stroke engines. A two stroke engines featuring crank case scavenging, precise oiling, direct injection and jet ignition is analyzed here by using CAD, CFD and CAE tools. Results of simulations of engine performances are shown in details. The CFD analysis is used to study fuel injection, mixing and combustion. The CAE model then returns the engine performances over the full range of loads and speeds with the combustion parameters given as an input. The use of asymmetric rather than symmetric port timing and supercharging scavenging is finally suggested as the best avenue to further improve power density and fuel conversion efficiency.
Technical Paper

Transient Emissions Comparisons of Alternative Compression Ignition Fuels

1999-03-01
1999-01-1117
The effects of fuel composition on emissions levels from compression ignition engines can be profound, and this understanding has led to mandated reductions in both sulfur and aromatic content of automotive diesel fuels. A Navistar T444E (V8, 7.3 liter) engine was installed on an engine dynamometer and subjected to transient emissions measurement using a variety of fuels, namely federal low sulfur pump diesel; California pump diesel; Malaysian Fischer-Tropsch fuel with very low sulfur and aromatic content; various blends of soy-derived biodiesel; a Fischer-Tropsch fuel with very low sulfur and 10% aromatics; and the same Fischer-Tropsch fuel with 10% isobutanol by volume. The biodiesel blends showed their ability to reduce particulate matter, but at the expense of increasing oxides of nitrogen (NOx), following the simple argument that cetane enhancement led to earlier ignition. However, the Fischer-Tropsch fuels showed their ability to reduce all of the regulated emissions.
Technical Paper

Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW)

2006-04-03
2006-01-1392
This paper presents on-going finite element modeling efforts of friction stir spot welding (FSSW) process using Abaqus/Explicit as a finite element solver. Three-dimensional coupled thermal-stress model was used to calculate thermo-mechanical response of FSSW process. Adaptive meshing and advection schemes, which makes it possible to maintain mesh quality under large deformations, is utilized to simulate the material flow and temperature distribution in FSSW process. The predicted overall deformation shape of the weld joint resembles that experimentally observed. Temperature and stress graphs in the radial direction as well as temperature-deformation distribution plots are presented.
Technical Paper

The Optimization of MOP Control Strategy for a Range-Extended Electric Vehicle Based on GA

2017-10-08
2017-01-2464
The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy. Finally, a dynamic simulation model of REEV is developed in Matlab/Simulink.
Technical Paper

Technological Evaluation of Fuel Efficiency Improvement Concepts to Meet Future Regulatory Requirements in the North American Market

2002-10-21
2002-01-2809
As fuel economy and emissions regulations increase in stringence, automakers face ever increasing difficulty in meeting government imposed standards. In this paper a study of fuel economy improving techniques used to meet these regulations, notably Corporate Average Fuel Economy (CAFE), and the upper limit on the effectiveness of these techniques is presented. The effects of external vehicle improvements, such as lightweighting, rolling resistance and aerodynamic improvements were investigated to illustrate the limitations of these methods to dramatically improve overall vehicle efficiency. Engine efficiency improvements, including the effects of compression ignition (unthrottled) versus spark ignition (throttled) engine types were examined. Other engine efficiency areas that were investigated were the implementation of cylinder deactivation and gasoline direct injection engines.
Technical Paper

System Level RBDO for Military Ground Vehicles using High Performance Computing

2008-04-14
2008-01-0543
The Army continues to improve its Reliability-based Design Optimization (RBDO) process, expanding from component optimization to system optimization. We are using the massively parallel computing power of the Department of Defense (DoD) High Performance Computing (HPC) systems to simultaneously optimize multiple components which interact with each other in a mechanical system. Specifically, we have a subsystem of a military ground vehicle, consisting of more than four components and are simultaneously optimizing five components of that subsystem using RBDO methods. We do not simply optimize one component at a time, sequentially, and iterate until convergence. We actually simultaneously optimize all components together. This can be done efficiently using the parallel computing environment. We will discuss the results of this optimization, and the advantages and disadvantages of using HPC systems for this work.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Some Developments in DES Modeling for Engine Flow Simulation

2015-09-06
2015-24-2414
Scale-resolving turbulence modeling for engine flow simulation has constantly increased its popularity in the last decade. In contrast to classical RANS modeling, LES-like approaches are able to resolve a larger number of unsteady flow features. In principle, this capability allows to accurately predict some of the key parameters involved in the development and optimization of modern engines such as cycle-to-cycle variations in a DI engine. However, since multiple simulated engine cycles are required to extract reliable flow statistics, the spatial and temporal resolution requirements of pure LES still represent a severe limit for its wider application on realistic engine geometries. In this context, Hybrid URANS-LES methodologies can therefore become a potentially attractive option. In fact, their task is to preserve the turbulence scale-resolving in the flow core regions but at a significantly lower computational cost compared to standard LES.
Technical Paper

Simulation of a Continuously Variable Power Split Transmission

1999-03-01
1999-01-0062
Continuously variable transmissions promise to improve the performance and drivability of vehicles. The design and implementation of continuously variable transmissions for medium or large displacement (power) engines have been hampered by the power limitations of the belts. A continuously variable transmission with a power split design (CVPST) has been developed to minimize the loading on the belt while providing for increased power transfer compared to existing designs. To aid in the design and development of this CVPST, a simulator program has been developed. The simulator can be used to optimize the CVPST and to compare with other transmissions. Finally, an optimized CVPST design is presented.
Journal Article

Sensitivity Analysis and Control Methodology for Linear Engine Alternator

2019-04-02
2019-01-0230
Linear engine alternator (LEA) design optimization traditionally has been difficult because each independent variable alters the motion with respect to time, and therefore alters the engine and alternator response to other governing variables. An analogy is drawn to a conventional engine with a very light flywheel, where the rotational speed effectively is not constant. However, when springs are used in conjunction with an LEA, the motion becomes more consistent and more sinusoidal with increasing spring stiffness. This avoids some attractive features, such as variable compression ratio HCCI operation, but aids in reducing cycle-to-cycle variation for conventional combustion modes. To understand the cycle-to-cycle variations, we have developed a comprehensive model of an LEA with a 1kW target power in MATLAB®/Simulink, and an LEA corresponding to that model has been operated in the laboratory.
Journal Article

Resonance of a Spring Opposed Free Piston Engine Device

2016-04-05
2016-01-0568
Recent free piston engine research reported in the literature has included development efforts for single and dual cylinder devices through both simulation and prototype operation. A single cylinder, spring opposed, oscillating linear engine and alternator (OLEA) is a suitable architecture for application as a steady state generator. Such a device could be tuned and optimized for peak efficiency and nominal power at unthrottled operation. One of the significant challenges facing researchers is startup of the engine. It could be achieved by operating the alternator in a motoring mode according to the natural system resonant frequency, effectively bouncing the translator between the spring and cylinder, increasing stroke until sufficient compression is reached to allow introduction of fuel and initiation of combustion. To study the natural resonance of the OLEA, a numeric model has been built to simulate multiple cycles of operation.
Technical Paper

Regenerative Braking of a 2015 LMP1-H Racing Car

2015-09-27
2015-01-2659
Regenerative braking coupled to small high power density engines are becoming more and more popular in motorsport applications delivering improved performances while increasing similarities and synergies in between road and track applications. Computer aided engineering (CAE) tools integrated with the telemetry data of the car are an important component of the product development. This paper presents the CAE model developed to describe the race track operation of a LMP1-H racing car covering one lap of the Le Mans circuit. The friction and regenerative braking is discussed.
Technical Paper

Recommendation of Experimental Setup and use of Standardized Electrohydrodynamic Dimensionless Parameters for Optimization of a Dielectric Barrier Discharge Flow Control Device

2014-09-16
2014-01-2101
The high demand for traditional air traffic as well as increased use of unmanned aerial systems (UAS) has resulted in researchers examining alternative technologies which would result in safer, more reliable, and better performing aircraft. Active methods of aerodynamic flow control may be the most promising approach to this problem. Research in the area of aerodynamic control is transitioning from traditional mechanical flow control devices to, among other methods, plasma actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. Dielectric Barrier Discharge (DBD), one of the most widely studied forms of plasma actuation, employs an electrohydrodynamic (EHD) device which uses dominant electric fields for actuation. Unlike traditional flow control methods, a DBD device operates without moving components or mass injection methods.
Technical Paper

Quantification of Windage and Vibrational Losses in Flexure Springs of a One kW Two-Stroke Free Piston Linear Engine Alternator

2019-04-02
2019-01-0816
Methods to quantify the energy losses within linear motion devices that included flexural springs as the main suspension component were investigated. The methods were applied to a two-stroke free-piston linear engine alternator (LEA) as a case study that incorporated flexure springs to add stiffness to the mass-spring system. Use of flexure springs is an enabling mechanism for improving the efficiency and lifespan in linear applications e.g. linear engines and generators, cryocoolers, and linear Stirling engines. The energy loss due to vibrations and windage effects of flexure springs in a free piston LEA was investigated to quantify possible energy losses. A transient finite element solver was used to determine the effects of higher modes of vibration frequencies of the flexure arms at an operational frequency of 65 Hz. Also, a computational fluid dynamics (CFD) solver was used to determine the effects of drag force on the moving surfaces of flexures at high frequencies.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Journal Article

Pre-design Investigation of Resonant Frequency Effects on Gas Exchange Efficiencies of a One-kW Natural-Gas Linear Engine Alternator

2020-04-14
2020-01-0488
Performance of a natural gas two-stroke engine incorporated in a 1-kW free-piston oscillating Linear Engine Alternator (LEA) - a household electricity generator - was investigated under different resonant frequencies for pre-design phase purposes. To increase the robustness, power density, and thermal efficiencies, the crank mechanism in free-piston LEA is omitted and all moving parts of the generator operate at a fixed resonant frequency. Flexure springs are the main source of the LEA’s stiffness and the mass-spring dynamics dominates the engine’s speed. The trade-off between the engine’s performance, mass-spring system limits, and power and efficiency targets versus the LEA speed is very crucial and demands a careful investigation specifically at the concept design stages to find the optimum design parameters and operating conditions. CFD modeling was performed to analyze the effects of resonant frequency on the engine’s gas exchange behavior.
Technical Paper

PM Concentration and Size Distributions from a Heavy-duty Diesel Engine Programmed with Different Engine-out Calibrations to Meet the 2010 Emission Limits

2009-04-20
2009-01-1183
The temporary deactivation of the selective catalytic reduction (SCR) device due to malfunction requires the engine control to engage multiple engine-out calibrations. Further, it is expected that emitted particles will be different in composition, size and morphology when an engine, which meets the 2010 particulate matter (PM) gravimetric limits, is programmed with multiple maps. This study investigated the correlation between SCR-out/engine-out PM emissions from an 11-liter Volvo engine. Measurement of PM concentrations and size distributions were conducted under steady state and transient cycles. Ion Chromatograph analysis on gravimetric filters at the SCR-out has revealed the presence of sulfates. Two different PM size-distributions were generated over a single engine test mode in the accumulation mode region with the aid of a design of experiment (DOE) tool. The SCR-out PM size distributions were found to correlate with the two engine-out distributions.
X