Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Corrosion of Cast Aluminum Alloys under Heat-Transfer Conditions

1981-02-01
810038
Most coolant formulations designed for cast iron engines are unsatisfactory for aluminum head/block use because of excessive heat-transfer corrosion, resulting in heavy corrosion product deposition and loss of cooling efficiency in the radiator. The effect of inhibitor and buffer additives, singly and in combination, on the heat-transfer corrosion rates for cast aluminum alloys was investigated. It was shown that some tetraborate and phosphate mixtures can be excessively corrosive. Silicate, in contrast, effectively protects the heat-transfer surfaces. In addition, the effects of heat-transfer surface temperature, nucleate boiling, and variations in glycol, dissolved oxygen and chloride concentrations on the heat-transfer corrosion rate were investigated.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

1980-06-01
800800
The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
X