Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

2017-03-28
2017-01-1400
Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
Technical Paper

Vehicle Trajectory Planning and Control Based on Bi-Level Model Predictive Control Algorithm

2024-04-09
2024-01-2561
Autonomous driving technology represents a significant direction for future transportation, encompassing four key aspects: perception, planning, decision-making, and control. Among these aspects, vehicle trajectory planning and control are crucial for achieving safe and efficient autonomous driving. This paper introduces a Combined Model Predictive Control algorithm aimed at ensuring collision-free and comfortable driving while adhering to appropriate lane trajectories. Due to the algorithm is divided into two layers, it is also called the Bi-Level Model Predictive Control algorithm (BLMPC). The BLMPC algorithm comprises two layers. The upper-level trajectory planner, to reduce planning time, employs a point mass model that neglects the vehicle's physical dimensions as the planning model. Additionally, obstacle avoidance cost functions are integrated into the planning process.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Vacuum Cleaning Vehicle Dust Subsidence System Design

2014-04-01
2014-01-0750
Vacuum cleaning vehicle is the necessary equipment for the Municipal Sanitation Department to keep the road surface clean and the dust subsidence system is the heart unit for the proper function of the cleaning vehicle. The reasonable design of this system could increase the load capacity of the vehicle and be convenient for the garbage collecting and dumping. Meanwhile, the engine power could be relatively reduced and the influence on the environment duo to the dusty air in the outlet could be also effectively improved. In the study, the gravity dedusting principle is used firstly for structure design to reduce the flow rate of dust particles inside the lower part of the dust subsidence system. The ruleless collision loss among dust particles is reduced and thereby the fan power is saved. By means of a reasonable separated chamber design and the use of inertia baffle, the sort management for dust particles is developed and the work stress of the export filter is released observably.
Technical Paper

Thermal Stability Research of Vehicle Exhaust Waste-Heat Recovery System with Intermediate Medium

2016-04-05
2016-01-0228
Vehicle exhaust waste-heat recovery with thermoelectric power generators can improve energy efficiency, as well as vehicle fuel economy. In the conventional structure, the hot-end of thermoelectric module is directly connected with the outer wall of the exhaust pipe, while the cold-end is connected with the water pipe’s outer wall of the vehicle engine cooling cycle. However, the variety of vehicle engine operating conditions leads to the instability of the hot-end temperature, which will reduce the generating efficiency of the thermoelectric modules and also shorten its service life. This research is on the basis of constructing a heat transfer oil circulation, and to study the action principles and implementation methods of it.
Technical Paper

Thermal Management Design and Simulation of Symmetric Air-Cooled System for Lithium Battery

2023-04-11
2023-01-0517
Good heat dissipation of Lithium battery can prevent the battery from shortening its life due to rapid aging or thermal runaway. In this paper, an air-cooled structure of 5 series and 3 parallel battery packs is designed, which combines the advantages of series and parallel air ducts and optimizes the heat dissipation effect and the space ratio of air ducts. First, the heat generation model of NCR18650PF lithium battery is established, and the heat generation rate and time under different discharge rates are calculated. Combined with the working conditions of the battery itself, the necessity of battery pack heat dissipation was found.
Technical Paper

The TEG Hot-End Heat Capacity’s Effect on the Power Output Stability for Harvesting Automobile Exhaust Energy

2017-03-28
2017-01-0160
While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

The Performance Study of Air-Friction Reduction System for Hydraulic Retarder

2014-09-30
2014-01-2283
The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model.
Technical Paper

The Measures of Improving Power Generation Stability for Harvesting Automobile Exhaust Energy

2018-04-03
2018-01-1367
The automobile exhaust energy can be recovered by the thermoelectric module generator(TEG). Owing to the complex urban traffic, the exhaust gas’s temperature fluctuations are resulted, which means the unstable hot-end temperature of the TEG. By installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, it is possible to appropriately reduce the temperature fluctuation, but there is still a fluctuation of the TEG’s power output. Then by adding voltage filter circuit (VFC) after the TEG, the power output stability can be improved. This research uses SHCM and VFC to improve the stability of the exhaust gas generation. Firstly, the three-dimensional heat transfer model of the exhaust pipe thermoelectric power generation system is established. The heat capacity materials with low thermal resistance and high heat capacity were selected as the research object based on previous research.
Technical Paper

The Experimental Study and Performance Analysis of Air-Friction Reduction System for Hydraulic Retarder

2015-04-14
2015-01-1127
The hydraulic retarder is an important auxiliary braking device for the heavy vehicle, which has some characteristics, such as the big brake torque and long duration braking, when the vehicle is traveling in braking state. However, the transmission power loss will be produced when the vehicle is traveling in non-braking state. This transmission power loss is called Air-friction. Firstly, the air flow distribution characteristics of retarder cavity are studied by computational fluid mechanics, and the Air-friction characteristic in different conditions is analyzed. Then, according to the Air-friction characteristics for the condition of different filling density, a set of vacuum air loss reduction system is designed. Meanwhile, the test bench for retarder Air-friction is set up, the test data of the revolution speed, pressure in cavity and air loss resistance is obtained according to the test bench for hydraulic retarder.
Technical Paper

The Driving Planning of Pure Electric Commercial Vehicles on Curved Slope Road in Mountainous Area Based on Vehicle-Road Collaboration

2021-04-06
2021-01-0174
The mountain roads are curved and complicated, with undulating terrain and large distance between charging stations. Compared with traditional powered vehicles, in addition to safety issues, pure electric vehicles also need to deal with the driving range issue. At present, the relevant researches on automobile driving in mountainous areas mainly focus on the driving safety of traditional fuel oil vehicles when going uphill and downhill, while there are few researches on the driving planning of pure electric commercial vehicles on curved slope road. This paper presents a speed planning method for pure electric commercial vehicles based on vehicle-road collaboration technology. First, establish the vehicle dynamics model, analyze the vehicle dynamics characteristics when passing the downhill curve, calculate the safe speed range of the vehicle when passing the downhill curve, and establish the safe speed model of the downhill curve.
Technical Paper

The Auxiliary System of Cleaning Vehicle Based on Road Recognition Technology

2021-04-06
2021-01-0245
With the development of economy, the road cleaning faces great challenges because the road area keeps increasing and the road types tend to be diversified. Cleaning vehicle is widely used in road surface cleaning, but it is more and more difficult to meet the demand of road surface cleaning only through using a single road surface cleaning method. If the way of manual adjustment of cleaning parameters is adopted, the driver is required to have rich experience. At present, there is an urgent need for a cleaning vehicle that can autonomously adjust cleaning parameters according to the road surface. This study is based on road recognition technology. After the pavement category is reflected by the visual sensor feedback information and the pavement adhesion coefficient, the parameters of the cleaning vehicle are adjusted by the controller to adapt to different roads.
Technical Paper

The Application of the PUREM SCR System on YC6L350-40 HD Diesel Engine

2007-07-23
2007-01-1935
In order to meet the Euro IV HD diesel engine emission standard legislation limits, an efficient SCR system is adopted for PM optimized YC6L350-40 HD diesel engine serving in China. This paper presents tests made on the engine. The engine had base NOx emission of 8.8g/kwh over the ESC and 8.7g/kwh over the ETC. Outfitted with a 24.7 liter 300cpsi SCR catalyst, the engine NOx emission dropped to 3.2g/kwh over the ESC and 3.5g/kwh over the ETC.
Technical Paper

The Analysis of the Stiffness-Damping Parameters of a H-Bahn Vehicle

2017-06-05
2017-01-1890
H-Bahn ("hanging railway") refers to the suspended, unmanned urban railway transportation system. Through the reasonable platform layout, H-Bahn can be easily integrated into the existing urban transit system. With the development of urban roads, the associated rail facilities can be conveniently disassembled, moved and expanded. The track beam, circuits, communication equipment, and sound insulation screen are all installed in a box-type track beam so that the system can achieve a high level of integration and intelligence. The carriage of the modern H-banh vehicle is connected with the bogies by two hanging devices. The vehicle is always running in the box-type track beam; therefore there are less possibilities of derailment. Consequently, the key work focuses on the running stability evaluation and curve negotiation performance analysis.
Technical Paper

TD3 Tuned PID Controller for Autonomous Vehicle Platooning

2023-12-31
2023-01-7108
The main objective of platoon control is coordinated motion of autonomous vehicle platooning with small intervehicle spacing while maintaining the same speed and acceleration as the leading vehicle, which can save energy consumption and improve traffic throughput. The conventional platoon control methods are confronted with the problem of manual parameter tuning. In order to addres this isue, a novel bifold platoon control approach leveraging a deep reinforcement learning-based model is proposed, which enables the platoon adapt to the complex traffic environment, and guarantees the safety of platoon. The upper layer controller based on the TD3 tuned PID algorithm outputs the desired acceleration. This integration mitigates the inconvenience of frequent manual parameter tuning asociated with the conventional PID algorithm. The lower layer controller tracks the desired acceleration based on the inverse vehicle dynamics model and feedback control.
Technical Paper

Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag

2021-09-30
2021-01-5094
Recreational vehicles have a lot of potential consumers in China, especially the type C recreational vehicle is popular among consumers due to its advantages, prompting an increase in the production and sales volumes. The type C vehicle usually has a higher air drag than the common commercial vehicles due to its unique appearance. It can be reduced by optimizing the structural parameters, thus the energy consumed by the vehicle can be decreased. The external flow field of a recreational vehicle is analyzed by establishing its computational fluid dynamic (CFD) model. The characteristic of the RV’s external flow field is identified based on the simulation result. The approximation models of the vehicle roof parameters and air drag and vehicle volume are established by the response surface method (RSM). The vehicle roof parameters are optimized by multi-objective particle swarm optimization (MO-PSO).
Journal Article

Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial

2014-04-01
2014-01-1711
In order to predict the thermal fatigue life of the internal combustion engine exhaust manifold effectively, it was necessary to accurately obtain the unsteady heat transfer process between hot streams and exhaust manifold all the time. This paper began with the establishment of unsteady coupled heat transfer model by using serial coupling method of CFD and FEA numerical simulations, then the bidirectional thermal coupling analysis between fluid and structure was realized, as a result, the difficulty that the transient thermal boundary conditions were applied to the solid boundary was solved. What's more, the specific coupling mode, the physical quantities delivery method on the coupling interface and the surface mesh match were studied. On this basis, the differences between strong coupling method and portioned treatment for solving steady thermal stress numerical analysis were compared, and a more convenient and rapid method for solving static thermal stress was found.
Technical Paper

Study on the Influence of Low-Viscosity Engine Oil on Engine Friction and Vehicle Worldwide Harmonized Light Vehicles Test Cycle Fuel Economy

2020-09-23
2020-01-5062
To study the mechanism of the effect of low-viscosity oils on engine friction loss reduction so as to improve the vehicle fuel economy of the Worldwide harmonized Light vehicles Test Cycle (WLTC) by upgrading the Society of Automotive Engineers (SAE) viscosity grade of the factory fill oil from 5W30 to 0W20, eight 0W20 oil samples were blended with different doses of base oil, viscosity modifier (VM), and friction modifier (FM). Theoretical analysis by AVL-EXCITE simulation of the key friction pairs combined with practical engine friction torque test and vehicle WLTC fuel consumption tests were carried out. The results showed that 0W20 oils can effectively reduce the engine friction torque by 5.64 Nm and the friction loss by 11.95% with the throttle fully opened; while with the throttle closed, the friction torque decreased by 3.53 Nm and the friction loss by 11.26%, resulting to the improvement of the vehicle WLTC fuel economy by 2.08%.
Technical Paper

Study on Diesel-LPG Dual Fuel Engines

2001-09-24
2001-01-3679
A new type of dual fuel supply system has been developed. This system is able to economically convert conventional diesel engines into dual-fuel engines like LPG/Diesel engines and CNG/Diesel engines, which are capable of either using single diesel fuel or using dual-fuel including both diesel and CNG fuel or both diesel and LPG fuel. These diesel-LPG engines have been applied to the diesel buses in the public transportation of Guangzhou city, one of the biggest cities in China, owning to their low soot emissions, excellent operating performances and extremely low cost as well. Compared with the diesel baseline engine, it was found that there were a significant reduction in soot emission and an improvement of the fuel consumption with the diesel-LPG engine. Also the strategy on LPG content is discussed in order to meet the demands for soot emission, fuel economy, transient performance and output power at the same time.
X