Refine Your Search

Topic

Search Results

Technical Paper

Topology Optimization Design on Cooling-Plate for Lithium-ion Battery Based on Electro-Thermal Model

2023-04-11
2023-01-0506
A flow channel design of the battery liquid cooling plate is carried out through the variable density topology optimization method according to the heat dissipation requirements of lithium-ion power batteries under actual working conditions. Firstly, given the non-uniform heat generation of lithium battery cells, the heat generation mechanism is studied so that the battery electro-thermal model is established, then the distribution regularity of heat generation rate in the cell at different discharge rates is obtained. Subsequently, through COMSOL Multiphysics simulation software, the multi-objective topology optimization of the primary configuration radiator is conducted. The weights of the optimization objectives minimum temperature and minimum flow resistance are determined by practical engineering application. Finally, an optimized model with a volume fraction of 50% was obtained.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

The Selection of Working Fluid Used in the Organic Rankine Cycle System for Hydraulic Retarder

2016-04-05
2016-01-0187
With the improvement of occupants’ awareness on the driving safety, hydraulic retarder applications increase quickly. The traditional hydraulic retarder, on the one hand, exhausts the waste heat of transmission oil by the engine cooling system; on the other hand, the engine power should be consumed to drive the water pump and the engine cooling fan for maintaining the normal operation of the auxiliary braking system. In this study, the Organic Rankine Cycle (ORC) instead of the traditional hydraulic retarder water-cooling system is applied to achieve the effective temperature control of the hydraulic retarder, while the waste heat of transmission oil could be recovered for saving vehicle energy consumption. The ORC fluid selection needs comprehensive consideration for the net power of the ORC and the optimal temperature range of the retarder transmission oil at both the inlet and outlet end, which is the key issue to ensure the stability and efficiency of the ORC system performance.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

The Performance Study of Air-Friction Reduction System for Hydraulic Retarder

2014-09-30
2014-01-2283
The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model.
Technical Paper

The Modeling and Performance Analysis of the Retarder Thermal Management System

2012-09-24
2012-01-1929
In order to obtain the comprehensive evaluation of thermal management system for the retarder, the complete driveline thermal management model is built. The characteristic parameters for the thermal management system are determined and the hydromechanical characteristics for the retarder are fixed by the rig test. On the basis of the same whole vehicle driving cycle, comparing to the traditional mechanical-drive system, the independent-drive system makes the working temperature of the heat source more stable. Meanwhile the parasitic power caused by the radiator fan is decreased markedly on the condition that the heat reject requirement of the heat source is satisfied.
Technical Paper

The Experimental Study and Performance Analysis of Air-Friction Reduction System for Hydraulic Retarder

2015-04-14
2015-01-1127
The hydraulic retarder is an important auxiliary braking device for the heavy vehicle, which has some characteristics, such as the big brake torque and long duration braking, when the vehicle is traveling in braking state. However, the transmission power loss will be produced when the vehicle is traveling in non-braking state. This transmission power loss is called Air-friction. Firstly, the air flow distribution characteristics of retarder cavity are studied by computational fluid mechanics, and the Air-friction characteristic in different conditions is analyzed. Then, according to the Air-friction characteristics for the condition of different filling density, a set of vacuum air loss reduction system is designed. Meanwhile, the test bench for retarder Air-friction is set up, the test data of the revolution speed, pressure in cavity and air loss resistance is obtained according to the test bench for hydraulic retarder.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

Study of Energy Recovery System Based on Organic Rankine Cycle for Hydraulic Retarder

2016-04-05
2016-01-0239
The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
Technical Paper

Research on cooling system for 4-cylinder diesel engine

2007-07-23
2007-01-2064
Coolant flow and its heat transfer directly affect the cooling efficiency, thermal load of heated components as well as thermal efficiency of diesel engine. An efficient approach to study cooling system for diesel engine is 3D CFD calculation for coolant jacket and 1D cooling system simulation. The velocity, pressure and heat transfer coefficients (HTC) distribution in the coolant jacket of a 4 cylinder diesel engine are computed by 3D CFD approach using AVL/FIRE software. The improved schemes can be put forward according to calculating results. The boundary condition of 1D cooling system for diesel engine can be obtained by averaging computed inlet and outlet total pressure drop and heat transfer coefficients from CFD calculation. The parameters of the engine, which are fitted with the vehicle such as capacity of radiator, fan and water pump, could be decided.
Technical Paper

Research on Transmission Efficiency of Mechanical Transmission Based on Test Bench

2016-10-17
2016-01-2356
This paper mainly researches transmission efficiency (TE) of mechanical transmission in relation to the temperature of lubricating oil. Firstly the formula of TE is calculated about the kinematic viscosity of lubricating oil, then analyze the relationship between kinematic viscosity and temperature of lubricating oil, and finally the formula of TE which is related to the oil temperature is put forward. In order to verify the theoretical formula, the test bench for mechanical transmission is designed, which is used to research the N109 transmission of one mini car. The bench can be used to measure the curve of TE under different speed , load and lubricating oil temperature. The optimum operating temperature of the transmission is obtained by analyzing the measured data and theoretical calculation results. The test bench adopts 2 AC asynchronous motors to respectively simulate the driving and load performance of a vehicle.
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Technical Paper

Research on Objective Drivability Evaluation with Multi-Source Information Fusion for Passenger Car

2020-04-14
2020-01-1044
The drivability plays an important role for marketability and competitiveness of passenger car in meeting some customer requirements, which directly affects the driving experience and the desire of purchasing. In this paper, a framework of objective drivability evaluation with multi-source information fusion for passenger car is proposed. At first, according to vehicle powertrain system and optimization theory, certain vehicle performances, which are closely related to objective drivability are analyzed, including vehicle longitudinal acceleration, vehicle speed, engine torque, engine speed, gear position, accelerator pedal, brake signal and voltage signal. Then, combined with the evaluation criterion of signal-to-noise ratio (SNR), mean error (ME), root mean squared error (RMSE) and signal smoothness (SS), a de-noising method is developed for the drivability evaluation information.
Technical Paper

Research on Matching for the Rankine Cycle Evaporate-condensate System of Hydraulic Retarder

2016-09-18
2016-01-1938
The hydraulic retarder is an auxiliary braking device used for commercial vehicle in a long slope brake, and its transmission oil generates a lot of heat in its working process. If the heat of transmission doesn’t go through a reasonable management, it will seriously affect the braking performance of hydraulic retarder. To cool down the transmission oil, it will aggravates the load of the engine cooling system, and the long cooling path sometimes causes heat exchange not timely. When the Rankine cycle is used for cooling the hydraulic retarder transmission oil in virtue of its good heat transfer performance in phase change process, it can make the transmission oil temperature controlled more stable. In this new system, the setting parameters of the Evaporate-condensate system will affect the stability of the transmission oil temperature in the hydraulic retarder inlet and the energy recovery efficiency of the system.
Technical Paper

Research on Integration of Automotive Exhaust-Based Thermoelectric Generator with Front Muffler

2016-04-05
2016-01-0203
In order to make full use of engine exhaust heat, the thermoelectric module been used to contribute to thermoelectric power generation in the automotive. At present, the thermoelectric generators (TEGs) have been developing with continuously advances in thermoelectric technology. And almost all of the existing thermoelectric technologies are adding a gas tank to the vehicle exhaust system which increases the exhaust back pressure and occupying excessive space of the vehicle chassis. In this study, a new TEG integrated with a front silencer muffler (FMTEG) is proposed. The muffler is reshaped as the heat exchanger which has a hexagon cross-section. The water tank and clamping mechanism have been redesigned for the new heat exchanger. The FMTEG system’s dimensions are small that can well meet the installation requirements and has a good compatibility with the vehicle exhaust system.
Technical Paper

Research on Heat Dissipation Performance of Automobile Motor Based on Heat Pipe Optimization Design

2022-03-29
2022-01-0729
In new energy vehicles, the electric motor, as the main power source, is developing toward high power density. However, its heat generation problem always affects the overall performance of the motor, so an efficient motor cooling system is especially important. In desert or water-scarce areas, liquid cooling cannot meet the needs of new energy vehicle motor cooling. When glycol or other liquid coolants are low or depleted, motor heat dissipation becomes less effective. Heat pipe is a heat dissipation technology with advantages such as fast thermal response and light weight. In this paper, by improving the heat pipe arrangement and reducing the overall mass of the heat dissipation system, a heat pipe optimization design based on a drive motor heat dissipation scheme is proposed, and the overall stability of the motor working under high temperature conditions is improved.
Technical Paper

Research on Acoustic Performance of Automotive Exhaust Thermoelectric Generator

2016-04-05
2016-01-0220
With great development of thermoelectric exhaust heat recovery technology, more and more attention has been paid to optimization of automotive thermoelectric generators (ATEGs). A lot of work has been done on optimization of flow field and thermal analysis. However, investigation on acoustic optimization is rather limited. In this paper, efforts have been paid to study the acoustic performance of a flat-plate TEG, and the feasibility of integration of automotive exhaust thermoelectric generator with muffler was discussed. The internal configuration of heat exchanger looks like “fishbone”. Four factors have been taken into consideration: the spacing of two fins, angle of the fins, the diameter of inlet and outlet of exchanger; and filling sound absorbing material in heat exchanger chamber. Based on these four factors, acoustic analysis was carried out.
Technical Paper

Pressure Drop and Heat Transfer Analysis of Power Battery Liquid Cooling System

2022-12-16
2022-01-7122
The battery liquid cooling system can ensure that the battery works within a suitable temperature range, improve the safety performance of the battery system, and ensure the cruising range. This paper introduces a design scheme of a stamped double-parallel liquid cooling plate. Based on the STAR-CCM+ simulation software, a thermal simulation model of the battery management system is established to analyze the thermal behavior of the battery system and to study the effect of the inlet mass flow rate on the temperature of the top surface of the batteries. At the same time, with the analysis of the proportion of pressure drop of each component in the liquid cooling plate, an optimization of inserted part in the liquid cooling plate is proposed. The numerical analysis results are compared with the experimental results of the pressure drop to improve the effectiveness of the optimization scheme.
X