Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Topology Optimization Design on Cooling-Plate for Lithium-ion Battery Based on Electro-Thermal Model

2023-04-11
2023-01-0506
A flow channel design of the battery liquid cooling plate is carried out through the variable density topology optimization method according to the heat dissipation requirements of lithium-ion power batteries under actual working conditions. Firstly, given the non-uniform heat generation of lithium battery cells, the heat generation mechanism is studied so that the battery electro-thermal model is established, then the distribution regularity of heat generation rate in the cell at different discharge rates is obtained. Subsequently, through COMSOL Multiphysics simulation software, the multi-objective topology optimization of the primary configuration radiator is conducted. The weights of the optimization objectives minimum temperature and minimum flow resistance are determined by practical engineering application. Finally, an optimized model with a volume fraction of 50% was obtained.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

Thermo-Mechanical Fatigue Study of Gasoline Engine Exhaust Manifold Based on Weak Coupling of CFD and FE

2016-10-17
2016-01-2350
This paper combines fluid software STAR-CCM+ and finite element software ABAQUS to solve the temperature field of this Gasoline engine exhaust manifold based on loose coupling method. Through the simulation of car parking cooling - full load condition at full speed, we estimate thermal fatigue life of the exhaust manifold with the plastic strain increment as the evaluation parameters. It can guide the direction of optimal design of the exhaust manifold. Here we also revealed how the bolt force affects the manifold elastic and plastic behavior.
Technical Paper

The Topology Optimization Analysis on Rope-Wheel Glass Lifter

2016-04-05
2016-01-1384
Glass lifter is a key part of automobile door system. Guide rail is the carrier of glass lifter, and it bears various load cases when glass lifer works. Mass, stiffness and natural frequencies are the factors that influence the performance of glass lifter. In order to design a lighter and reasonable glass lifter, topology optimization methods are studied in this paper. In a rope-wheel glass lifter, design domain is determined by the mechanical structure and working conditions. Firstly, the single target continuum structure topology optimization mathematic models of guide rail are built in this paper, and analysis of multi-stiffness topology optimization are carried out accordingly in which volume fraction is set as 0.4, 0.5 and 0.6. These models are based on SIMP (Solid Isotropic Material with Penalization) theory.
Technical Paper

The Shock Absorber of Energy Recovery Using Electrorheological Fluid

2012-04-16
2012-01-0981
When vehicle traveling on the bumpy road or vehicle acceleration and deceleration, which will cause the body vibration of vehicle, at the same time, a large part of energy would be absorbed by the shock absorber transforms the mechanical energy into heat energy dissipated. In order to recycle the energy of vibration and keep the stability of running car, this paper provides the shock absorber of energy recovery that recycling the energy dissipated from the traditional absorber. The shock absorber includes rod and rodless chamber cavity, the two parts contain oil outlet and oil inlet, which connected to a bridge type loop of hydraulic to make pulsating oil pressure towards one direction, when the shock absorber vibration causes pulsating oil pressure, it drives hydraulic pump operation. Because the output shaft of the hydraulic pump fixedly attached to the input shaft of generator, so the generator produces electricity for recycling energy[1].
Technical Paper

The Selection of Working Fluid Used in the Organic Rankine Cycle System for Hydraulic Retarder

2016-04-05
2016-01-0187
With the improvement of occupants’ awareness on the driving safety, hydraulic retarder applications increase quickly. The traditional hydraulic retarder, on the one hand, exhausts the waste heat of transmission oil by the engine cooling system; on the other hand, the engine power should be consumed to drive the water pump and the engine cooling fan for maintaining the normal operation of the auxiliary braking system. In this study, the Organic Rankine Cycle (ORC) instead of the traditional hydraulic retarder water-cooling system is applied to achieve the effective temperature control of the hydraulic retarder, while the waste heat of transmission oil could be recovered for saving vehicle energy consumption. The ORC fluid selection needs comprehensive consideration for the net power of the ORC and the optimal temperature range of the retarder transmission oil at both the inlet and outlet end, which is the key issue to ensure the stability and efficiency of the ORC system performance.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

The Modeling and Performance Analysis of the Retarder Thermal Management System

2012-09-24
2012-01-1929
In order to obtain the comprehensive evaluation of thermal management system for the retarder, the complete driveline thermal management model is built. The characteristic parameters for the thermal management system are determined and the hydromechanical characteristics for the retarder are fixed by the rig test. On the basis of the same whole vehicle driving cycle, comparing to the traditional mechanical-drive system, the independent-drive system makes the working temperature of the heat source more stable. Meanwhile the parasitic power caused by the radiator fan is decreased markedly on the condition that the heat reject requirement of the heat source is satisfied.
Technical Paper

The Energy Saving of Cooling Fan with Electro-Hydraulic Motors Based on Fuzzy Control

2016-09-27
2016-01-8117
The cooling system with two fans is generally driven by electrical motors in the small cars. Compared with the traditional cars, heavy duty trucks have the larger heat dissipation power of cooling system. The motors power consumption of dual fans will be larger and the two electrical motors will occupy a large space in the engine cabin. Hydrostatic drive refers to the cooling fan is driven by hydraulic motor, but it has the low transmission efficiency. According to the engine water temperature value and the actual working status of the hydraulic system, the actual speed of cooling fan can be controlled by the computer, which guarantees the normal working water temperature of the engine. Hydrostatic drive is generally applied to heavy vehicles, engineering machinery and excavators as driving source of cooling fan which contains the advantages of large output power, overload protection, continuous speed regulation and flexible space arrangements.
Technical Paper

The Effect Factors and Location Planning Method Study of a Novel Car-Sharing Network

2017-03-28
2017-01-0249
With the development of the Internet for vehicles, the Car-sharing has been developed rapidly in recent years. This paper focuses on the network programming and distribution for Car-sharing, which helps to clarify the characteristics and basic law of Car-sharing network development, as well as the main approaches to construct it. Firstly, by analyzing the effect factors and expanding ways of Car-sharing network, characteristics of the development of Car-sharing industry and its network, as well as main Car-sharing users and services, the influence factors of Car-sharing demand and the main demand points in a city are summarized. Secondly, in order to better evaluate the network programming and distribution for Car-sharing, this paper proposes an optimization decision method of the car-sharing network planning by evaluating the possible alternatives in a same scale. The assessment index of Car-sharing network planning is constructed.
Technical Paper

The Design and Realization of Steam Turbine Blade CAD/CAM System

2021-04-06
2021-01-0816
The turbine blade is a key component in the operation of the steam turbine hence the design and manufacturing level of the blade will directly affect the performance and efficiency of the turbine. CAD/CAM has been the foundation and important part of advanced manufacturing technology. It is important to study the steam turbine blade integrated CAD/CAM system to improve the design and manufacture of the blade. In this paper, the structure of CAD/CAM system for steam turbine blade is studied and the extensible framework structure including user layer, functional layer and system layer is proposed. Based on the control points of the turbine blade profile design method, and based on the expression between the three-dimensional parametric vector modeling method in UG-based platform, the use of UG/Open development tools and Visual C # developed a turbine blade CAD system.
Technical Paper

The Combined Braking Energy Management Strategy to Maximize Energy Recovery

2016-04-05
2016-01-0453
Eddy current retarder (ECR) shares a large market of auxiliary brakes in China, but shortcomings of the short continuous braking time and the high additional energy consumption are also obvious. The propose of combined braking partakes the braking torque of ECR. However, the existed serial-parallel braking strategy could hardly balance well the relationship between the braking stability and the energy recovery efficiency. This research puts forward an energy management strategy of combined braking system which aims to maximize energy recovery while ensure the brake stability. The motor speed, the braking request and the state of charge (SoC) of the storage module are analyzed synthetically to calculate the reasonable braking torque distribution proportion. And the recovered energy is priority for using in the braking unit to reduce the additional energy consumption in this strategy.
Technical Paper

Study on Variable Combustion Chamber (VCC) Engines

2012-09-10
2012-01-1607
A patented VCC (variable combustion chamber) piston mechanism is presented, by which excess in-cylinder pressure would be able to be limited effectively based on each working cycle while a spark-ignition engine running with higher CR (compression ratio) of 12.0:1. A conventional engine can be converted to a VCC engine just by replacing its typical pistons with VCC pistons. Besides the benefits that VCR (Variable Compression Ratio) has been still pursued so far, there would be other advantages for VCC engine, such as excellent fuel economy at each load not only at light loads, and the improvement of cycle-by-cycle variation of in-cylinder pressure, and high reliability with simple structure. The innovative design of VCC piston is introduced. The main design features of VCC piston are a VCC mechanism assembled between the piston crown and the piston skirt, and a special reset cam assembled at the wrist-pin end of the connecting rod.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
Technical Paper

Research on the Harmonics-Based the Optimization Algorithm for the Active Synthesis of Automobile Sound

2023-05-08
2023-01-1045
The technology of active sound generation (ASG) for automobiles is one of the most effective methods to flexibly achieve the sound design that meets the expectations of different user groups, and the active sound synthesis algorithms are crucial for the implementation of ASG. In this paper, the Kaiser window function-based the harmonic synthesis algorithm of automobile sound is proposed to achieve the extraction of the order sounds of target automobile. And, the suitable fitting functions are utilized to construct the mathematical model between the engine speed information and the amplitude of the different order sound. Then, a random phase correction algorithm is proposed to ensure the coherence of the synthesized sounds. Finally, the analysis of simulation results verifies that the established method of the extraction and synthesis of order sound can meet the requirements of target sound quality.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Research on cooling system for 4-cylinder diesel engine

2007-07-23
2007-01-2064
Coolant flow and its heat transfer directly affect the cooling efficiency, thermal load of heated components as well as thermal efficiency of diesel engine. An efficient approach to study cooling system for diesel engine is 3D CFD calculation for coolant jacket and 1D cooling system simulation. The velocity, pressure and heat transfer coefficients (HTC) distribution in the coolant jacket of a 4 cylinder diesel engine are computed by 3D CFD approach using AVL/FIRE software. The improved schemes can be put forward according to calculating results. The boundary condition of 1D cooling system for diesel engine can be obtained by averaging computed inlet and outlet total pressure drop and heat transfer coefficients from CFD calculation. The parameters of the engine, which are fitted with the vehicle such as capacity of radiator, fan and water pump, could be decided.
Technical Paper

Research on Vehicle Type Recognition Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-1992
As a key technology of intelligent transportation system, vehicle type recognition plays an important role in ensuring traffic safety,optimizing traffic management and improving traffic efficiency, which provides strong support for the development of modern society and the intelligent construction of traffic system. Aiming at the problems of large number of parameters, low detection efficiency and poor real-time performance in existing vehicle type recognition algorithms, this paper proposes an improved vehicle type recognition algorithm based on YOLOv5. Firstly, the lightweight network model MobileNet-V3 is used to replace the backbone feature extraction network CSPDarknet53 of the YOLOv5 model. The parameter quantity and computational complexity of the model are greatly reduced by replacing the standard convolution with the depthwise separable convolution, and enabled the model to maintain higher accuracy while having faster reasoning speed.
X