Refine Your Search

Topic

Search Results

Technical Paper

Visual Study Focused on the Combustion Problem in Gasoline Direct Injection Engine

2003-09-16
2003-32-0014
Combustion phenomena inside the actual Gasoline-Direct-Injection (GDI) engines have been drawing high attention to its emission characteristics as well as its potential to deal with ultra lean mixture. Although the detailed observation is necessary for its improvement, combustion visualization seems to be strangely overlooked for some reason. This study focuses on the direct observation of GDI combustion to clarify the difficulties behind GDI concept by using a test engine of an actual “wall-guided” configuration and by comparing GDI spray quality with diesel spray in a high-pressure constant volume bomb. The results show that some of the problems about GDI combustion seem to be rather essential than easily conquered, which suggests the necessity for another combustion concept.
Journal Article

The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy

2013-10-15
2013-32-9046
A monolithic type aluminum (Al) cylinder made of hypereutectic Aluminum-Silicon alloy has been widely used for motorcycle applications. It has a lightweight structure and a superior cooling ability owing to its material property and surface finishing. Usually the cylinder bore surface of the monolithic type Al cylinder is finished by an etching process or a honing process in order to expose silicon (Si) particles from aluminum (Al) matrix for the improvement of the tribological properties. The morphology of the cylinder bore surface including the exposure of Si particles is supposed to make an important effect on its tribological properties, especially on the anti-scuffing property. In this research, the anti-scuffing property of three kinds of cylinder bore finishing, an etched surface, a Si exposure honed surface and a conventional plateau honed surface is evaluated with using a reciprocated type wear tester. The experimental results are analyzed by using Weibull analysis.
Technical Paper

Study on Characteristics of Gasoline Fueled HCCI Using Negative Valve Overlap

2006-11-13
2006-32-0047
Gasoline fueled Homogeneous Charge Compression Ignition (HCCI) combustion with internal exhaust gas re-circulation using Negative Valve Overlap (NOL) was investigated by means of calculation and experiment in order to apply this technology to practical use with sufficient operating range and with acceptable emission and fuel consumption. In this paper we discuss the basic characteristics of NOL-HCCI with emphasis on the influence of intake valve timing on load range, residual gas fraction and induction air flow rate. Emission and fuel consumption under various operation conditions are also discussed. A water-cooled 250cc single cylinder engine with a direct injection system was used for this study. Three sets of valve timing were selected to investigate the effect of intake valve opening duration. Experimental results demonstrated that an engine speed of approximately 2000rpm yields an NMEP (Net Mean Effective Pressure) range from 200kPa to 400kPa.
Technical Paper

Study of bonded valve-seat system (BVS)

2000-06-12
2000-05-0144
The Bonded Valve Seat System is the latest technology to realize drastic reduction in valve temperature in SI engines characterized by the good thermal conductivity of extremely thin valve seats bonded directly on the aluminum cylinder head. A unique and highly rationalized resistance bonding technique was developed to maintain adequate bonding strength and positioning precision in a short bonding period of around one second. Engineering data on optimization of bonding-section geometry, valve seat material and the surface treatment and bonding parameters were presented and discussed regarding the mechanism. The geometry of the bonding section of the cylinder head was optimized by FEM analysis so that the aluminum material should deform to embed the valve seat ring with the action of expelling the surface contamination and the oxide film. The bonding facility was modified so that the electrode axis should move flexibly according to distortion of the cylinder head during bonding.
Technical Paper

Section Flow Improvement of Plasma Spray Cylinder in Outboard Motor

2013-10-15
2013-32-9029
The two-stroke engines were in the main stream of the outboard motors, but they have been replaced with the four-stroke counterparts reflecting the environmental protection movement in recent years. However, the replacement with four-stroke engines involves increased number of components and additional displacement, and the outboard motors tend to be larger and heavier. This represents an issue, since the maneuverability of the boat is degraded due to the inappropriate weight distribution on the boat. Yamaha outboard motors F300B and VF250A, of which the production started in the year 2009, are equipped with four-stroke engines, and yet achieved the light weight equivalent to their two-stroke counterparts. The production volume of these models reached 20,000 units.
Journal Article

Relation between the Weave Mode in Low Speed Range and Slalom Running of Motorcycles

2012-10-23
2012-32-0122
Recently, our research has focused on the weave mode. This is a representative vibration mode of motorcycles and is important when considering maneuverability and stability. In a method of analyzing the weave mode, a disturbance is applied to the handle bars of the motorcycle during running and then the response waveform of the roll angle and other items at that time is used to perform estimations. However, when the motorcycle is driven at low speeds, the steering operations of the rider have a large effect on the running data and this makes estimation difficult. Therefore, it was assumed that weave mode data can be estimated from slalom running data since this possesses almost the same vibration frequency as the weave mode in low speed range. In this research, a simulation was used to investigate the relationship between the weave mode and slalom running.
Journal Article

Reduced-Order Modeling of Intake Air Dynamics in Single-Cylinder Four-Stroke Engine

2013-10-15
2013-32-9041
This study deals with reduced-order modeling of intake air dynamics in single-cylinder four-stroke naturally-aspirated spark-ignited engines without surge tanks. It provides an approximate calculation method for embedded micro computers to estimate intake manifold pressures in real time. The calculation method is also applicable to multi-cylinder engines with individual throttle bodies since the engines can be equated with parallelization of the single-cylinder engines. In this paper, we illustrate the intake air dynamics, describe a method to estimate the intake manifold pressures, and show experimental results of the method.
Technical Paper

Predictive Simulation of PFI Engine Combustion and Emission

2013-10-15
2013-32-9169
This paper reports a methodology to estimate combustion pattern and emission by predictive simple simulation with good accuracy on various conditions of PFI engine. 3D-CFD cord VECTIS has been applied for this simulation, its settings and methods are as follows. RANS equation with liner k-epsilon model has been used as the turbulence model. Turbulent burning velocity equation contains not only turbulent velocity term but also laminar burning velocity term. For ignition model, we use a predictive model called DPIK. We iterate cycle calculation until wallfilm behavior is stabilized to get the reasonable mixture formation. We have applied this methodology to 125cc engine of motorcycle. As a result, we have obtained heat release curve and pressure curve with good accuracy on various operating conditions such as engine speed, engine load, air fuel ratio, wall temperature, and spray direction. CO and NOx calculated simultaneously have also been acceptable.
Technical Paper

Motorcycle Engines: Past, Present and Future

1999-09-28
1999-01-3347
In the past, the performance of motorcycle engines has improved quite rapidly through intensive competition in racing and in the marketplace. Motorcycle engines have contributed to the technological progress of internal combustion engines (hereafter abbreviated as ICE). Today's environmental concerns require motorcycle engines to improve fuel economy and exhaust emission pollutants. After examination of potential measures to improve the thermal efficiency of small engines, it was concluded that if engineers of motorcycle engines fail to take on new ideas such as those being developed in cold fusion, it is foreseen that motorcycle engines will be replaced with new power plants as was seen on locomotives in the past.
Technical Paper

Light Body for Small Vehicles Using High-Quality Die-Casting Component

2003-10-27
2003-01-2869
A high-quality die-casting technology has been developed for lightweight aluminum frame structures that produces high-strength aluminum parts that are also weldable. This new technology has been used in casting frames for motorcycles and snowmobiles and has enabled improved frame designs with far fewer component parts than was possible before. This die-casting technology also results in a significant reduction in energy consumption during the manufacturing process.
Technical Paper

Lifetime Prediction of a Crankpin using a Ball on Disk Type Rolling Contact Fatigue Life Testing

2007-10-30
2007-32-0085
This paper describes an experimental method to predict the rolling contact fatigue life of a crankpin in a market vehicle engine. The fatigue life up to pitting was evaluated by two laboratory tests including a fatigue life measurement using a ball-on-disk test machine and a crankpin durability measurement by an engine bench test. The surface observation after the tests revealed that the surface dent triggers pitting in both tests. The Weibull plot of the percent failure vs. cycle to failure as a function of the contact stress was presented. In order to directly evaluate the effect of the contact stress on the lifetime, the lifetime values measured at L50 are plotted in the diagram showing the contact stress vs. cycle to failure. The obtained relation can predict the lifetime under the controlled condition in which the number of maximum torque points is countable.
Technical Paper

Investigation on Relationship Between Thermal Efficiency and NOx Formation in Ultra-Lean Combustion

1999-09-28
1999-01-3328
With emergence of fuel cells which have much better thermal efficiency than internal combustion engines (later abbreviated as ICE), ICE has to improve its thermal efficiency to the level of 50%. One of the ways to improve the thermal efficiency of ICE is to utilize ultra-lean combustion and several technical papers have been published. But it seems the thermal efficiency has not been improved as the theory predicts. The test data of these technical papers were re-examined and it was concluded that the thermal dissociation of burned gas and NOx formation is the key factor of a discrepancy between the theory and the actual test data. In order to prevent an occurrence of thermal dissociation, emulsified fuels (mixture of carbonaceous fuels with water) was proposed.
Technical Paper

Improvement of Fuel Consumption with Variable Exhaust Port Timing in a Two-Stroke Gasoline Engine

1985-02-01
850183
In this study, an improvement of fuel consumption by changing the exhaust timing of a two-stroke engine has been made. The study results revealed that a remarkable improvement of fuel economy is possible by controlling the exhaust timing according to the engine speed. The reason for the better fuel economy was clarified through an analysis of exhaust gases, theoretical cycle calculations, and an analysis of combustion pressure. As an example of actual application, the results of tests made on an engine equipped with Yamaha power Valve System (YPVS), which is a variable exhaust timing mechanism using a tabor-shaped valve, will also be discussed.
Technical Paper

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

2023-10-24
2023-01-1853
In recent years, global warming, depletion of fossil fuels, and reducing pollution have become increasingly prominent issues, resulting in demand for environmentally-friendly two-wheeled vehicles capable of reducing CO2 emissions. However, it remains necessary to meet customers’ expectations by providing smaller drivetrains, lighter vehicles, and support for long-distance riding, among other characteristics. In the face of this situation, hybrid electric vehicle (HEV) systems are considered to be the most realistic method for creating environmentally-friendly powertrains and are widely used. This research introduces a hybrid electric two-wheeled vehicle fitted with an electrical variable transmission (EVT) system, a completely new type of electrical transmission that meets the aforementioned needs, achieving enhanced fuel efficiency with a compact drivetrain. The EVT system comprises double rotors installed inside the stator.
Technical Paper

Fuel Injection System for Small Motorcycles

2003-09-15
2003-32-0084
Attempts have been made to develop an electronically controlled fuel injection system that is ideal for small motorcycles, cost-efficient, compact, and electric power-saving while maintaining accuracy. For reducing the number of sensors and cost, highly accurate methods have been developed for the measurement of intake air mass, detection of acceleration, distinction of engine stroke, and estimation of atmospheric pressure without using a throttle position sensor, cam timing sensor, and barometric sensor in such a manner as to carry out sampling with the intake manifold pressure of single-cylinder engines synchronizing with the crank angle. For compactness and electric power saving, an injector and in-tank fuel pump module have been developed for small motorcycles.
Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Technical Paper

Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine

2001-09-24
2001-01-3556
The in-cylinder flow, mixture distribution, combustion and exhaust emissions in a research, five-valve purpose-built gasoline engine are discussed on the basis of measurements obtained using laser Doppler velocimetry (LDV), fast spark-plug hydrocarbon sampling, flame imaging and NOx/HC emissions using fast chemiluminescent and flame ionisation detectors/analysers. These measurements have been complemented by steady flow testing of various cylinder head configurations, involving single- and three-valve operation, in terms of flow capacity and in-cylinder tumble strength.
Technical Paper

Effects on Fuel Economy and NOx Emission Using Stratified Charge and EGR System for a Single Cylinder Motorcycle Engine

2008-09-09
2008-32-0018
In this study, lean combustion concept was investigated to realize better Fuel Economy (FE) on a single cylinder motorcycle engine. A low-pressure direct injection (DI) system was applied to realize lean stratified combustion concept with good combustion stability. In addition, Exhaust Gas Recirculation (EGR) system applicable to small motorcycle engines was used to attain FE improvement and NOx reduction. EGR gas temperature and EGR return position were focused on and effects on FE and NOx were investigated. Computational Fluid Dynamics (CFD) was used to reveal EGR distribution and air motion in both the intake port and the cylinder. As a result, the influence of the stratified charge, EGR temperature and EGR return position on FE and NOx were explained quantitatively. These techniques were effective in reducing NOx and improving FE for a single cylinder motorcycle engine.
Journal Article

Effects of Surface Compound Layer on Bending Fatigue Strength of Nitrided Chromium-Molybdenum Steel

2020-01-24
2019-32-0504
Carburized and quenched materials with high fatigue strength are often used for motorcycle engine parts. Nitrided materials exhibit less deformation during heat treatment than carburized and quenched materials, so if the same or higher fatigue strength can be achieved with nitrided materials as with carburized and quenched materials, the geometric precision of parts can be increased and we can reduce engine noise as well as power loss. When the fatigue strengths of a nitrided material with its compound layer surface put into γ’ phase through nitriding potential control (hereafter, G), and a nitrided material put into ε phase (hereafter, E) were measured, the results showed the fatigue strength of the G to be about 11% higher than that of carburized and quenched materials. It was inferred that the strength of the compound layer determines fatigue strength.
Technical Paper

Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-Cast Cylinders made of Hypereutectic Al-Si Alloy

2023-10-24
2023-01-1806
In recent years, efforts to reduce CO2 emissions (carbon neutrality) have accelerated worldwide. In the aluminum manufacturing industry, CO2 emissions can be reduced by switching the raw materials of choice; from virgin ingots to recycled ingots. However, the possible characteristic change accompanying the usage of impurity-ridden recycled ingots severely limits its applications, which also limits its potential contribution to carbon neutrality. Determining how impurity elements present in recycled ingots can affect the function of manufactured components is a necessary first step towards expanding the usage of recycled ingots. In this study, we aimed to apply recycled ingots to the monolithic cylinder made of hypereutectic Al-Si alloy and investigated how impurity elements in recycled ingots affect properties (especially seizure characteristic). Die-cast cylinders using virgin and recycled ingots were manufactured and their properties were investigated.
X