Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Effects of Hydrogen Concentration on Stoichiometric H2/CH4/Air Premixed Turbulent Flames

2013-10-14
2013-01-2563
Outwardly propagating stoichiometric flames of H2/CH4/air were studied in a constant volume fan-stirred combustion chamber in order to investigate the effects of hydrogen concentration on the turbulent burning velocities. The experiments were conducted at mixture temperature of 350 K and mixture pressure of 0.10 MPa. The mole fraction of hydrogen in the binary fuel was varied from 0 to 1.0 for turbulence intensities equal to 1.23, 1.64 and 2.46 m/s. Laminar flames of the mixtures were first investigated to obtain the unstretched laminar burning velocities and the associated Markstein numbers. The unstretched laminar burning velocity increased non-linearly with increase in hydrogen fraction. The Markstein number and the effective Lewis number of the mixtures varied non-monotonically with hydrogen mole fraction. The Markstein number was used to investigate the influence of thermo-diffusive effects on the turbulent burning velocity.
X