Refine Your Search

Topic

Search Results

Standard

AUTOMATIC BRAKING SYSTEMS REQUIREMENTS

1993-04-01
HISTORICAL
ARP1907
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Aircraft Brake Temperature Monitoring

2021-10-28
CURRENT
ARP6812
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the function, design, construction, and testing of an on-aircraft Brake Temperature Monitoring System (BTMS), sometimes referred to as a Brake Temperature Indication System (BTIS). NOTE: This ARP does not address: Cockpit ergonomics and Aircraft operating procedures. Various handheld methods of temperature sensing or readouts, as these are not associated with transport aircraft during normal operation. Temperature sensitive paints as a means to indicate exceedance of a landing gear axle temperature threshold due to brake temperature.
Standard

Aircraft Tire Inflation-Deflation Equipment

2014-07-11
CURRENT
AS1188A
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Tire Inflation-Deflation Equipment

2008-06-16
HISTORICAL
AS1188
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Assessment of Aircraft Wheel Sealing Systems

2020-09-17
CURRENT
ARP5146
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
Standard

Automatic Braking Systems

2016-01-25
CURRENT
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems

2014-08-20
HISTORICAL
ARP1907B
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems Requirements

2006-10-26
HISTORICAL
ARP1907A
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

BRAKE DYNAMICS

2006-03-17
HISTORICAL
AIR1064C
The landing gear is a complex multi-degree of freedom dynamic system and may encounter vibration problems induced by braking action. The vibratory modes can be induced by several frictional characteristics and brake design features. These should be assessed during the design concept and verified during the development of the hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear system problems associated with aircraft brake dynamics and the approaches to the solution of these problems. In addition, facilities available for test and evaluation are presented and discussed.1
Standard

Brake Systems, Wheel, Military Aircraft

2008-10-20
HISTORICAL
AS8584A
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
Standard

Brake Systems, Wheel, Military Aircraft

2013-11-01
CURRENT
AS8584B
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
Standard

Carbon Brake Contamination and Oxidation

2016-04-12
CURRENT
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
X